Szerkesztő:Mozo/ A2 bizonyítások

A MathWikiből

Tartalomjegyzék

Többdimenziós Bolzano–Weierstrass-tétel

Lásd még:Bolzano–Weierstrass-tétel

A többdimenziós (de nem végtelendimenziós) esetben a csúcselemes bizonyítás nem működik abban az értelmeben, hogy közvetlenül nem hivatkozhatunk rájuk, mert nincs RN-ben a műveletekkel kompatibilis rendezés. Gondolhatnók arra is, hogy komponensenként használjuk az egydimenziós B–W-tételt. Ezzel a következő a probléma. Világos, hogy létezik minden projekciósorozatra egy-egy részsorozat, mely konvergens. Ám ebből egyáltalán nem következtethetünk arra, hogy ezek metszetéből kiválasztható részsorozat. Ellenpéldaként vegyünk egy R2-ben haladó sorozatot. Tegyük fel, hogy (szerencsétlen módon) az egydimenziós B–W-tétel az első komponensek sorozatából a páros indexűeket, a második komponensek közül a páratéan indexűeket választja ki. Ekkor a kétdimenziós sorozatnak nincs olyan részsosozata, mely a komponensorozatok közös indexeikből válaszható ki, tekintve, hogy a közös indexen halmaza üres.

A fentiek miatt olyan módon kell konvergens részsorozatokat kiválasztanunk, mely bizonyosan végtelen sok közös indexel rendelkeznek. A konstrukció a következő.

Bizonyítás

Legyen

(a_n)=(a_n^{(1)}, a_n^{(2)}, ..., a_n^{(N)})\in (\mathbf{R}^N)^{\mathbf{Z}^+}

egy N komponensű sorozat, mely korlátos RN-ben. Ekkor a komponenssorozatok is korlátosak. Az egydimenziós B–W-tétel szerint az

(a_n^{(1)})

sorozathoz létezik σ1 indexsorozat úgy, hogy az

(a_n^{(1)})\circ\sigma_1

konvergens részsorozat. Hasonlóképpen, de a

(a_n^{(2)})\circ\sigma_1

sorozatnak is van

(a_n^{(2)})\circ\sigma_1\circ\sigma_2

konvergens részsorozata. Megállapíthatjuk, hogy a

(a_n^{(1)})\circ\sigma_1\circ\sigma_2

sorozat szintén konvergens, mert konvergens sorozat részsorozata. Ugyanígy léteznek σ1, σ2, ..., σN indexsorozatok, hogy a

(a_n^{(1)})\circ\sigma_1
(a_n^{(2)})\circ\sigma_1\circ\sigma_2
\vdots
(a_n^{(N)})\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

sorozatok mind konvergensek és így tetszőleges k=1...N-re

(a_n^{(k)})\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

is az, ami pontosan azt jelenti, hogy az

(a_n)\circ\sigma_1\circ\sigma_2\circ...\circ\sigma_N

sorozat komponensenként konvergens, azaz konvergens. A

\sigma_1\circ\sigma_2\circ...\circ\sigma_N

tehát olyan indexsorozat, mely konvergens részsorozatot választ ki (an)-ből.

Ellenpélda végtelen dimenzióra

A tétel végtelen dimenziós esetben nem igaz. Vegyük példul a korlátos valós függvények

\mathrm{B}([-1,+1],\mathbf{R})\,

terében a szuprémumnormát:

||f||=_{\mathrm{def}}\sup\{|f(x)|\mid x\in [-1,+1]\}\,

és a belőle definiálható távolságot. Ebben az esetben a páratlan gyökkitevőjű gyökfüggvények

 f_n=\sqrt[2n+1]{.\;}\quad\quad (f_n(x)=\sqrt[2n+1]{x})

sorozata nem konvergens. Ez amiatt van, hogy az itteni konvergenciafogalom ugyanaz, mint a függvénysorozatok egyenletes konvergenciájának fogalma. Bár ez a függvénysorozat pontonként konvergál a szignumfüggvényhez, de a sorozat a szignumfüggvény minden környezetéből kilép. Emiatt még az is igaz, hogy egyetlen részsorozta sem lehet konvergens (azaz egyenletesen konvergens), holott a függvénysorozat maga korlátos (u.is. belefoglalható az azonosan 0 függvény 2 sugarú környezetébe).

Megjegyzés. A tétel azon iránya, mely a sorozatkompaktságot tételezi fel, igaz marad minden metrikus térben.

Weierstrass tétele

Az alábbiakban felhasználjuk a kompaktság fogalmát (és esetleg a bizonyitas egy masik variansa a Heine–Borel-tételt).

(Kompakt egy K halmaz, ha minden nyílt halmazrendszerből, melynek uniója lefedi K-t kiválasztható véges sok nyílt halmaz is, melyek véges uniója még mindig lefedi K-t.

Heine–Borel-tétel. Veges dimenzios normalt terben korlátos és zárt halmaz kompakt.)

Tétel (Weierstrass) Valós értékű, kompakt halmazon folytonos függvény felveszi minimumát és maximumát.

(Ha f ∈ C(Rn,R), Dom(f) kompakt, akkor sup(f), inf(f) ∈ Ran(f) )

Bizonyítás.

1) Először belátjuk, hogy kompakt halmazon folytonos függvény korlátos. Legyen ugyanis ε tetszőleges pozitív szám és f értelmezési tartománya K. A folytonosság miatt K minden u eleméhez létezik δ(u) pozitív szám, hogy f a Bδ(u) környezeten belül mindvégig az (f(u)-ε,f(u)+ε) intervallumon belül marad. Ekkor a nyílt halmazokbol allo {Bδ(u)(u) : uK} rendszer lefedi K-t, ami kompakt, azaz ebből mar véges sok is lefedi K-t. Legyen ez {Bδ(u)(u) : uF}, ahol tehát FK véges. Ezek képei mind a (f(u)-ε,f(u)+ε) (uF) intervallumokban vannak, így a {(f(u)-ε,f(u)+ε) : uF} véges intervallumrendszer lefedi Ran(f)-et. Tehát f a "legmagasabb" intervallum felső határa és a "legalacsonyabb" intervallum alsó határa közé esik.

2) Belátjuk, hogy f felveszi a szuprémumát (és ugyanígy az infimumát is). Legyen S := sup(f) (azaz f értékkészletének legkisebb felső korlátja). Ekkor a g : K \to R, x \mapsto S-f(x)függvény nemnegatív értékeket vesz föl. Ha f nem venné fel a szuprémumát, akkor g pozitív lenne. Ekkor értelmezhető lenne a

h:K\to\mathbf{R};x\mapsto \frac{1}{S-f(x)}

függvény. h mert folytonos függvényekből van folytonosságot megőrző módon összetéve. Az 1) pont szerint korlátos is, ami azonban ellentmond annak, hogy S a szuprémum, mert f minden határon túl megközelíti S-et. Ugyanis minden S - 1/n számhoz létezik olyan xnK, hogy f(xn) > S - 1/n. Létezik tehát olyan (xn) K-ban haladó sorozat, melyre f(x_n) alulrúl az S-hez tart. Ám, ekkor az 1/(S-f(xn)) a +∞-hez tart, ami h korlátossága miatt lehetetlen.

Differenciálhatóság

Definíciója

Legyen f: Rn \supset\!\longrightarrow Rm és u ∈ int Dom(f). Azt mondjuk, hogy f differenciálható az u pontban, ha létezik olyan A: Rn \to Rm lineáris leképezés, hogy

\lim\limits_{x\to u}\frac{f(x)-f(u)-\mathcal{A}(x-u)}{||x-u||_{\mathbf{R}^n}}=0_{\mathbf{R}^m}

Ekkor A egyértelmű és az f leképezés u-bent beli deriválttenzorának vagy differenciáljának nevezzük és df(u)-val vagy Df(u)-val jelöljük. Ezt a fogalmat néha teljes differenciálnak, totális differenciálnak vagy Fréchet-deriváltnak is mondjuk.

Deriváltmátrix

Vizsgáljuk mibe viszi a bázisokat df(u) komponensleképezésenként. A df(u) lineáris leképezés (e1,e2,...,en) szetenderd bázisbeli mátrixa legyen: [df(u)] = A. Világos, hogy (df(u))(x)=A x. Először vegyük az A első sorvektorát, A1-et és az e1 egységvektor mentén tartunk u-hoz: x = u + te1. A df(u)-t definiáló határértékegyenlőség ekkor a következő alakot ölti:

0=\lim\limits_{t\to 0}\frac{f_1(u+te_1)-f_1(u)-\mathbf{A}_1\cdot(te_1)}{t}=
=\lim\limits_{t\to 0}\frac{f_1(u+te_1)-f_1(u)-t\mathbf{A}_1\cdot(e_1)}{t}=
=-\mathbf{A}_1\cdot e_1+\lim\limits_{t\to 0}\frac{f_1(u+te_1)-f_1(u)}{t}

azaz

\mathbf{A}_1\cdot e_1=\lim\limits_{t\to 0}\frac{f_1(u+te_1)-f_1(u)}{t}=\partial_1 f_1(u)

vagyis f első koordinátafüggvényének f1-nek az első változó szerinti parciális deriváltja az u pontban. A többi mátrixelemet ugyanígy:

[\mathrm{d}f(u)]=\mathbf{J}^f(u)=\begin{bmatrix}
\partial_1 f_1(u) & \partial_2 f_1(u) & \dots & \partial_n f_1(u)\\
\partial_1 f_2(u) & \partial_2 f_2(u) & \dots & \partial_n f_2(u)\\
\vdots            &     \vdots        &   \ddots    & \vdots \\
\partial_1 f_m(u) & \partial_2 f_m(u) & \dots & \partial_n f_m(u)\\
\end{bmatrix}

amelyet Jacobi-mátrixnak nevezünk.

Lineáris, konstans és affin függvény deriváltja

Az A : Rn \to Rm lineáris leképezés differenciálható és differenciálja minden pontban saját maga.

Ugyanis, legyen uRn. Ekkor

\lim\limits_{x\to u}\frac{\mathcal{A}(x)-\mathcal{A}(u)-\mathcal{A}(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

c konstans függény esetén az dc(u) \equiv 0 alkalmas differenciálnak, mert

\lim\limits_{x\to u}\frac{c-c-0\cdot(x-u)}{||x-u||}=\lim\limits_{x\to u}0=0

így világos, hogy c + A alakú affin függvények is differenciálhatóak, és differenciáljuk minden pontban az az A lineáris leképezés, melynek eltolásából az affin származik. Ezt szintén behelyettesítéssel ellenőrizhetjük.

Tehát minden uRn-re

\mathrm{d}\mathcal{A}(u)=\mathcal{A},\quad\quad\mathrm{d}c(u)\equiv 0,\quad\quad\mathrm{d}(b+\mathcal{A}\circ(id-a))(u)=\mathcal{A}

Elégséges feltétel totális differenciálhatóságra

Tétel. Ha az f:Rn\to Rm függvény minden parciális deriváltfüggvénye létezik az u egy környezetében és u-ban a parciális deriváltak folytonosak, akkor u-ban f differenciálható.

Dimenziótétel

A dimenziótétel az lineáris leképezések magterének és képterének dimenziója közötti szoros (kiegészítő jellegű) kapcsolatra mutat rá. Most csak az \mbox{ }_\mathcal{L}(Rn;Rm) leképezéseket vizsgáljuk (a tétel bármely végesdimenziós vektortérből tetszőleges vektortérbe menő lineáris függvényre is igaz.)

Magtér

Az A : Rn \to Rm lineáris leképezés magtere:

\mathrm{Ker}(\mathbf{A})=_{\mathrm{def}}\{v\in \mathbf{R}^n\mid \mathbf{A}v=0\}

világos, hogy ez altér. Ugyanis altér jelemzhető úgy, mint olyan részhalmaz a térben, mely zárt az összeadásra és a skalárral történő szorzásra. De Ker(A) ilyen, mert tetszőleges u, v vektorra

\mathbf{A}v=0\;\land\;\mathbf{A}u=0 \quad \Rightarrow\quad\mathbf{A}v+\mathbf{A}u=0\quad \Rightarrow\quad\mathbf{A}(v+u)=0

és

\mathbf{A}v=0\quad \Rightarrow\quad\lambda.(\mathbf{A}v)=0\quad \Rightarrow\quad\mathbf{A}(\lambda.v)=0

Bázisát (Rn-ben) például az A leképezés [A] mátrixának Gauss-eliminációjával és az [A]x=0 homogén egyenletrendszer megoldásával nyerhetünk (példa itt).

Képtér

Az A : Rn \to Rm lineáris leképezés képtere:

\mathrm{Im}(\mathbf{A})=_{\mathrm{def}}\{\mathbf{A}v\in \mathbf{R}^m\mid v\in \mathbf{R}^n\}

világos, hogy ez altér. Ugyanis alkalmas v és u vektorokkal:

\mathbf{A}v+\mathbf{A}u=\mathbf{A}(v+u)

és

\lambda.(\mathbf{A}v)=\mathbf{A}(\lambda.v)

Bázisát (Rn-ben) például úgy nyerünk, hogy a A leképezés [A] mátrixának oszlopvektorai közül Gauss-eliminációval kiválasztjuk a legtöbb vektort tartalmazó lineárisan független rendszert (példa itt).

Tétel és bizonyítás

Dimenziótétel. Ha A : Rn \to Rm lineáris leképezés, akkor

\mathrm{dim}\,\mathrm{Ker}(\mathbf{A}) + \mathrm{dim}\,\mathrm{Im}(\mathbf{A}) = n

Bizonyítás. Ha vesszük Ker(A) egy

B=\{b_1,...,b_k\}\,

bázisát (Ker(A) dimenziója tehát k) akkor világos, hogy a báziselemek képei által kifeszített

\langle\mathbf{A}b_1,\mathbf{A}b_2,...,\mathbf{A}b_k\rangle

altér az Rm-beli triviális {0} altér. Világos, hogy ha veszük egy Ker(A)-n kívüli c vektort, akkor ez már nem képeződhet a {0}-ba. Megfogalmazhatjuk tehát azt a sejtést, hogy ha B-t kibővítíjük Rn bázisává, mondjuk a

C=\{c_1,...,c_l\}\,

független vektorrendszerrel, akkor C elemeinek képei Im(A) bázisát fogja adni. Ezt fogjuk igazolni, azaz hogy

\langle\mathbf{A}c_1,\mathbf{A}c_2,...,\mathbf{A}c_l\rangle=\mathrm{Im}(\mathbf{A})

és ami a tétel állítását igazolja: Im(A) dimenziója pont l.

1. Először belátjuk, hogy { Ac1, Ac2, ...,Acl } generátorrendszere Im(A)-nak. Legyen

v=\mathbf{A}u\,

Mivel B + C bázisa Rn-nek, ezért u előáll (egyértelmű módon)

u=\lambda_1b_1+\lambda_2b_2+...+\lambda_kb_k+\mu_1c_1+\mu_2c_2+...+\mu_lc_l\,

alakban. De u képében a B-beliekkel előállíthatók a {0}-ba mennek, így már a C-ből jövő képek is előállítják Au-t:

\mathbf{A}u=\mathbf{A}(\lambda_1b_1+\lambda_2b_2+...+\lambda_kb_k)+\mathbf{A}(\mu_1c_1+\mu_2c_2+...+\mu_lc_l)=
=0+\mathbf{A}(\mu_1c_1+\mu_2c_2+...+\mu_lc_l)
=\mu_1\mathbf{A}c_1+\mu_2\mathbf{A}c_2+...+\mu_l\mathbf{A}c_l

2. Belátjuk, hogy { Ac1, Ac2, ...,Acl } független vektorrendszer is, tehát dimenziója l.

Tegyük fel, hogy vannak ν1, ν2, ...,νl számok, melyekkel

\nu_1\mathbf{A}c_1+\nu_2\mathbf{A}c_2+...+\nu_l\mathbf{A}c_l=0

A függetlenséghez az kell, hogy ν1, ν2, ...,νl-k mind nullák legyenek. Természetesen a bal oldalon kiemelhetünk A-t, tehát:

\mathbf{A}(\nu_1c_1+\nu_2c_2+...+\nu_lc_l)=0

Ez viszont pontosan azt jelenti, hogy ha az

u=\nu_1c_1+\nu_2c_2+...+\nu_lc_l\,

rövidítéshez folyamodunk, akkor

u\in \mathrm{Ker}(\mathbf{A})

azaz az u vektor B-beli elemekkel is és C-beli elemekkel is előállítható. De ez csak úgy lehet, hogy u=0, ami pedig csak akkor van, ha a ν1, ν2, ...,νl számok mind nullák.

Mindez azt jelenti, hogy { Ac1, Ac2, ...,Acl } bázis, amiből következik, hogy az általa kifeszített altér dimenziója l. De a kifeszített altér pont Im(A), így azt kaptuk, hogy

\mathrm{dim}(\mathrm{Im}(\mathbf{A}))=n-k\,

vagyis, amit be akartunk látni.

Megjegyzés. Világos, hogy a fenti bizonyításban a B által generál altér és a C által generált altér közös része a {0} (vagyis csak a 0-t állítják elő mindeketten). Ugyanis, ha lenne v ≠ 0, hogy

v=\lambda_1b_1+\lambda_2b_2+...+\lambda_kc_k\,

és közben

v=\mu_1c_1+\mu_2c_2+...+\mu_kc_k\,

akkor mindkét egyenletben a skalárok között lenne nemnulla, és a két egyenletet kivonva egymásból hpnánk, hogy a 0 vektor előáll olyan B és C-beli elemek lineáris kombinációjaként, ahol az együtthatók között van nemnulla. Ez viszont az jelentené, hogy B + C nem független rendszer (holott B + C a B egy kibővítése az Rn bázisává).

Ilyenkor azt mondjuk, hogy a Rn vektorteret előállítottuk a B által kifeszített és a C által kifeszített alterek direkt összegeként:

\mathbf{R}^{n}=\langle B\rangle\oplus\langle C\rangle\,

Cauchy-féle gyökkritérium

Tétel. Legyen (an) valós számsorozat, ∑(an) pedig a belőle képezett sor. Ekkor

  • ha \mbox{ }_{\mathrm{limsup}\sqrt[n]{|a_n|}<1}, akkor ∑(an) abszolút konvergens
  • ha \mbox{ }_{\mathrm{limsup}\sqrt[n]{|a_n|}>1}, akkor ∑(an) divergens

Bizonyítás

1. Legyen

c_n=\sqrt[n]{|a_n|}\,

Ekkor s = limsup(cn) a lismesz szuperrior fogalmának deifíciója szerint az |an| sorozat elemeinek n-edik gyökeinek (cn) sorozatának legnagyobb sűrűsödési pontja. Sűrűsödési pont, azaz s minden környezetében van a (cn) sorozatnak végtelen sok eleme, és a legnagyobb, mert nincs nála nagyobb sűrűsödési helye (cn)-nek.

s < 1 miatt vehetünk egy q számot úgy, hogy

s < q < 1

Ekkor s "limsupsága" miatt egy adott M természetes számot követő minden n-re:

c_n < q\,

hiszen ha lenne végtelen sok elem, melyre ez nem telhesülne, akkor lenne s nél nagyobb sűrűsödési pont is. Tehát

\sqrt[n]{|a_n|} < q\,

azaz

|a_n| < q^n\,

De a (qn) mértani sorozatból képezett sor konvergens (hisz |q|<1), így a majoráns kritérium miatt a

\sum|a_n|\,

sor is konvergens (merthogy a szóbanforgó mértani sor majorálja). Eszerint ∑(an) abszolút konvergens.

2. A másik esetben, minthogy s = limsup(cn), van olyan részsorozata (cn)-nek melynek minden eleme 1-nél nagyobb egyenlő:

c_{n_k} \geq 1\,

ekkor viszont

\sqrt[n_k]{|a_{n_k}|} \geq 1\,

és

|a_{n_k}| \geq 1\,

de a szükséges kritérium miatt ha (an) (és vele együtt az összes részsorozata) nem a 0-hoz tart, akkor ∑(an) nem konvergens, márpedig a fenti olyan részsorozata (an)-nek, mely nem tarthat a 0-hoz, így ∑(an) nem konvergens.

Megjegyzések. A bizonyításból kiderül, hogy a tétel állításának második pontjánál többet is állíthatunk. Ha ugyanis van olyan részsorozata (cn)-nek melynek minden eleme 1-nél nagyobb egyenlő, már akkor is állíthatjuk, hogy ∑(an) nem konvergens. Ám az nem igaz, hogy ha limsup(cn) \mbox{ }_{\geq} 1, akkor ∑(an) nem konvergens, ellenpélda az

\textstyle\sum(\frac{1}{n^2})

sor. Ez konverges, holott az n-edik gyökök sorozatának limesz szuperiorja 1.

Az előbb említett általános divergencia kritériumon túl azonban csak azt mondhatjuk, hogy ha limsup(cn) = 1, akkor további vizsgálatokat kell végeznünk, hogy döntésre juthassunk a konvergencia/divergencia kérdésében.

Személyes eszközök