Szerkesztő:Mozo/ A3 bizonyítások

A MathWikiből
< Szerkesztő:Mozo(Változatok közti eltérés)
(Green-tétel)
 
(egy szerkesztő 9 közbeeső változata nincs mutatva)
257. sor: 257. sor:
 
0& \ddots& 0\\
 
0& \ddots& 0\\
 
0 & 0& \lambda_n\end{pmatrix}</math>
 
0 & 0& \lambda_n\end{pmatrix}</math>
Ez nehéz, de fontos tétel.
+
Ez nehéz, de fontos tétel. -->
  
===A deriválttenzor invariánsai===
+
==A deriválttenzor invariánsai==
 
Tudjuk, hogy ha '''v''' differenciálható vektorfüggvény, akkor az '''r'''<sub>0</sub> pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező '''A''' lineáris leképezést értjük, melyre:
 
Tudjuk, hogy ha '''v''' differenciálható vektorfüggvény, akkor az '''r'''<sub>0</sub> pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező '''A''' lineáris leképezést értjük, melyre:
 
:<math>\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}</math>
 
:<math>\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}</math>
271. sor: 271. sor:
 
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}</math>
 
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}</math>
  
'''Megjegyzés.''' A főtengelytételből következik, hogy hogyan jellemezhető az az eset, amikor az '''A''' deriváltenzor főtengelyre transzformálható. Ez pontosan akkor van, amikor rot('''v''')=0.-->
+
'''Megjegyzés.''' A főtengelytételből következik, hogy hogyan jellemezhető az az eset, amikor az '''A''' deriváltenzor főtengelyre transzformálható. Ez pontosan akkor van, amikor rot('''v''')=0.
 
+
<!--
 
==Komplex differenciálhatóság==
 
==Komplex differenciálhatóság==
 
'''Definíció''' - ''Komplex differenciálhatóság, komplex derivált'' - Legyen ''f'' a ''z''<sub>0</sub> egy környezetében értelmezett függvény. Azt mondjuk, hogy ''f'' '''C'''-deriválható ''z''<sub>0</sub>-ban és deriváltja a ''w'' szám, ha  
 
'''Definíció''' - ''Komplex differenciálhatóság, komplex derivált'' - Legyen ''f'' a ''z''<sub>0</sub> egy környezetében értelmezett függvény. Azt mondjuk, hogy ''f'' '''C'''-deriválható ''z''<sub>0</sub>-ban és deriváltja a ''w'' szám, ha  
294. sor: 294. sor:
 
:<math>\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=\cos(-2\varphi)+i\sin(-2\varphi)</math>  
 
:<math>\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=\cos(-2\varphi)+i\sin(-2\varphi)</math>  
 
Ennek a határértéke nem létezik a nullában.
 
Ennek a határértéke nem létezik a nullában.
 +
===Jellemzés===
  
 
'''Tétel.''' - ''A komplex differenciálhatóság jellemzése'' -  Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:
 
'''Tétel.''' - ''A komplex differenciálhatóság jellemzése'' -  Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:
325. sor: 326. sor:
  
 
'''Definíció''' - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.
 
'''Definíció''' - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.
 +
 +
===Egy tétel a reziduumról===
  
 
'''Tétel.''' Ha ''f''-nek k-adrendű pólusa van a <math>z_0\in \mathbf{C}</math>-ben (k>0), akkor  
 
'''Tétel.''' Ha ''f''-nek k-adrendű pólusa van a <math>z_0\in \mathbf{C}</math>-ben (k>0), akkor  
342. sor: 345. sor:
 
\mathrm{Res}_{z_0}f=\frac{1}{(k-1)!}(\varphi)^{(k-1)}(z_0)
 
\mathrm{Res}_{z_0}f=\frac{1}{(k-1)!}(\varphi)^{(k-1)}(z_0)
 
</math>
 
</math>
 
+
-->
 
==Potenciál==
 
==Potenciál==
  
354. sor: 357. sor:
 
vonalintegrál.
 
vonalintegrál.
  
 +
===Jellemzés===
 
A potenciálosság rendkívül szoros kapcsolatban van a cirkulációval és a rotációval:
 
A potenciálosság rendkívül szoros kapcsolatban van a cirkulációval és a rotációval:
  
387. sor: 391. sor:
 
skalárfüggvény független az úttól és a felső határ szerinti gradiense ugyanúgy az integrandus, mint az egyváltozós valós függvények esetén. QED.
 
skalárfüggvény független az úttól és a felső határ szerinti gradiense ugyanúgy az integrandus, mint az egyváltozós valós függvények esetén. QED.
  
Az előbb említett, az integrálfüggvény deriválhatóságának tételének megvan a párja is. Ez az ''első gradientétel'', mely végül is nem más, mint a Newton--Leibniz-formula többdimenziós általánosításai közül a legelső verzió:
+
===Gradiensre vonatkozó integráltétel===
 +
 
 +
Az előbb említett, az integrálfüggvény deriválhatóságának tételének megvan a párja is. Ez az ''első gradienstétel'', mely végül is nem más, mint a Newton--Leibniz-formula többdimenziós általánosításai közül a legelső verzió:
  
 
'''Tétel.'''  
 
'''Tétel.'''  
399. sor: 405. sor:
 
2) integrálás és az I. grad. tétel alkalmazása
 
2) integrálás és az I. grad. tétel alkalmazása
 
3) invariáns alakban adott feldatoknál primitívfüggvény keresés.
 
3) invariáns alakban adott feldatoknál primitívfüggvény keresés.
Ez utóbbi megoldához tudnunk kell, hogy a hossz n-edik deriváltja mi. Ezt a többváltozós függvények analízisében az összetett függvény deriválásánál tanultuk:
+
 
 +
===Hossz n-edik deriváltja===
 +
Ez utóbbi megoldáshoz tudnunk kell, hogy a hossz n-edik deriváltja mi. Ezt a többváltozós függvények analízisében az összetett függvény deriválásánál tanultuk:
 
ha '''r''' nem nulla, akkor  
 
ha '''r''' nem nulla, akkor  
 
:<math>\mathrm{grad} |\mathbf{r}|^n =n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}
 
:<math>\mathrm{grad} |\mathbf{r}|^n =n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}
408. sor: 416. sor:
 
:<math>\mathrm{grad} (f(\Phi(\mathbf{r})))=f'(\Phi(\mathbf{r}))\cdot\mathrm{grad}\Phi(\mathbf{r})=n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}</math>
 
:<math>\mathrm{grad} (f(\Phi(\mathbf{r})))=f'(\Phi(\mathbf{r}))\cdot\mathrm{grad}\Phi(\mathbf{r})=n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}</math>
  
<!--==Analitikus függvény reguláris==
+
<!--
 +
==Analitikus függvény reguláris==
  
 
===Komplex nemnegatív kitevőjű hatványsorok===
 
===Komplex nemnegatív kitevőjű hatványsorok===
500. sor: 509. sor:
 
Így a különbségi hányados minusz a majdani derivált abszolút eltérése felülbecsülhető egy nullához tartó szor korlátos függvénnyel, azaz P deriválató ''z''-ben és a deriváltja a formális tagonkénti deriválással kapott sor. A korlátosság onnan adódik, hogy hatványsor összegfüggvénye folytonos és a min{1/(2R),R/2} sugarú zárt körön, mint kompakt halmazon korlátos.
 
Így a különbségi hányados minusz a majdani derivált abszolút eltérése felülbecsülhető egy nullához tartó szor korlátos függvénnyel, azaz P deriválató ''z''-ben és a deriváltja a formális tagonkénti deriválással kapott sor. A korlátosság onnan adódik, hogy hatványsor összegfüggvénye folytonos és a min{1/(2R),R/2} sugarú zárt körön, mint kompakt halmazon korlátos.
  
'''Feladat.''' Legyen g:[a,b]<math> \to</math>'''C''' differenciálható görbe a komplex síkon, ''f'' komplex reguláris függvény, melyre: Ran(g) &sube; Dom(f). Igazoljuk, hogy a h: ''t'' <math>\mapsto</math> f(g(t)) is differenciálható és h'(t) = f'(g(t))<math>\cdot</math> g'(t), ahol <math>\cdot</math> a komplex szorzás. (Használjuk fel, hogy 1) a komplex diffhatóság jellemzése az, hogy a függvény mint kétváltozós valós vektorfüggvény totálisan differenciálható és a Jacobi-mátrixa komplex számot reprezentál, 2) a reguláris komplex függvény deriváltja olyan komplex szám, melyet az f, mint kétváltozós valós vektorfüggvény Jacobi-mátrixa reprezentál.)-->
+
'''Feladat.''' Legyen g:[a,b]<math> \to</math>'''C''' differenciálható görbe a komplex síkon, ''f'' komplex reguláris függvény, melyre: Ran(g) &sube; Dom(f). Igazoljuk, hogy a h: ''t'' <math>\mapsto</math> f(g(t)) is differenciálható és h'(t) = f'(g(t))<math>\cdot</math> g'(t), ahol <math>\cdot</math> a komplex szorzás. (Használjuk fel, hogy 1) a komplex diffhatóság jellemzése az, hogy a függvény mint kétváltozós valós vektorfüggvény totálisan differenciálható és a Jacobi-mátrixa komplex számot reprezentál, 2) a reguláris komplex függvény deriváltja olyan komplex szám, melyet az f, mint kétváltozós valós vektorfüggvény Jacobi-mátrixa reprezentál.)
  
 
==Komplex körintegrálok==
 
==Komplex körintegrálok==
610. sor: 619. sor:
 
:<math>f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint\limits_{G}\frac{f(z)}{(z-z_0){n+1}}\,\mathrm{d}z</math>
 
:<math>f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint\limits_{G}\frac{f(z)}{(z-z_0){n+1}}\,\mathrm{d}z</math>
  
<!--''Bizonyítás.'' Vegyünk a <math>z_0</math> körül egy olyan K kört, mely a pozitívan irányított G belsejében halad és ''r'' > 0 sugarú. Definiáljuk azt a görbét melyet a következőkppen kapunk. Metszük át egy befelé menő s sugárral a G és K közötti tartományt. Tegyük fel, hogy G és K kezdőpontjai a sugár metszetei. tákoljuk össze a következő görbét:
+
''Bizonyítás.'' Vegyünk a <math>z_0</math> körül egy olyan K kört, mely a pozitívan irányított G belsejében halad és ''r'' > 0 sugarú. Definiáljuk azt a görbét melyet a következőkppen kapunk. Metszük át egy befelé menő s sugárral a G és K közötti tartományt. Tegyük fel, hogy G és K kezdőpontjai a sugár metszetei. tákoljuk össze a következő görbét:
 
:<math>\Gamma=G^\frown s^\frown (-K)^\frown(-s)</math>
 
:<math>\Gamma=G^\frown s^\frown (-K)^\frown(-s)</math>
 
Világos, hogy ekkor a &Gamma;-ra vett körintegrál eltűnik, másrész szakaszonként intergálva a &Gamma;-n:
 
Világos, hogy ekkor a &Gamma;-ra vett körintegrál eltűnik, másrész szakaszonként intergálva a &Gamma;-n:
628. sor: 637. sor:
 
::<math>=\frac{\varepsilon}{r}\cdot \oint\limits_{|z-z_0|=r}\,\mathrm{d}|z|=\frac{\varepsilon}{r}\cdot 2\pi r=2\pi \varepsilon\to 0</math>
 
::<math>=\frac{\varepsilon}{r}\cdot \oint\limits_{|z-z_0|=r}\,\mathrm{d}|z|=\frac{\varepsilon}{r}\cdot 2\pi r=2\pi \varepsilon\to 0</math>
  
Vagyis az utolsó tag nulla így a formulát megkaptuk.-->
+
Vagyis az utolsó tag nulla így a formulát megkaptuk.
  
 
===Riemann-tétel===
 
===Riemann-tétel===
681. sor: 690. sor:
  
 
'''Következmény.''' Reguláris függvény analitikus.
 
'''Következmény.''' Reguláris függvény analitikus.
 +
===Szakadások osztályozása===
  
 
'''Következmény.''' Az izolált szingularitások a sorfejtés szerint osztályozhatóak éspedig. Az ''f'' függvény a <math>z_0</math> izolált szinguláris pontja körüli sorfejtésében
 
'''Következmény.''' Az izolált szingularitások a sorfejtés szerint osztályozhatóak éspedig. Az ''f'' függvény a <math>z_0</math> izolált szinguláris pontja körüli sorfejtésében
 
# pontosan akkor van csak reguláris tag, ha a szingularitás megszűntethető,
 
# pontosan akkor van csak reguláris tag, ha a szingularitás megszűntethető,
 
# pontosan akkor van véges sok főrészbeli tag, ha végtelen a határérék <math>z_0</math>-ban,  
 
# pontosan akkor van véges sok főrészbeli tag, ha végtelen a határérék <math>z_0</math>-ban,  
# pontosan akkor van végtelen sok főrészbeli tag (lényeges szingularitás), ha nem létezik a határérék <math>z_0</math>-ban.
+
# pontosan akkor van végtelen sok főrészbeli tag (lényeges szingularitás), ha nem létezik a határérék <math>z_0</math>-ban.-->
  
 
== Felületi integrál, Gauss-tétel==
 
== Felületi integrál, Gauss-tétel==
710. sor: 720. sor:
  
 
A tétel fontos alkalmazása a gömbszimmetrikus vektormezők felületi integráljának kiszámítása, ezek közül is a legfontosabb a reciproknégyzetes erősségű vektormezők.
 
A tétel fontos alkalmazása a gömbszimmetrikus vektormezők felületi integráljának kiszámítása, ezek közül is a legfontosabb a reciproknégyzetes erősségű vektormezők.
 +
===A ponttöltés keltette elektromos mező divergenciája, fluxusa===
  
 
Számítsuk ki a  
 
Számítsuk ki a  
742. sor: 753. sor:
 
: <math>\oint\limits_{\partial F}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{F}\mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{F}</math>
 
: <math>\oint\limits_{\partial F}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{F}\mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{F}</math>
 
Megjegyezzük, hogy a perem irányítása kompatibilis kell hogy legyen a felület irányításával, ellenkező esetben az integrál a fenti ellentettje lesz. Kompatibilis a felület és a pereme irányítása, ha "a felületi normálvektor irány a fejünk iránya, a lábunk a felületen van, a peremen haladunk végig és a felület bal kéz felől esik (jobbkézszabály)".
 
Megjegyezzük, hogy a perem irányítása kompatibilis kell hogy legyen a felület irányításával, ellenkező esetben az integrál a fenti ellentettje lesz. Kompatibilis a felület és a pereme irányítása, ha "a felületi normálvektor irány a fejünk iránya, a lábunk a felületen van, a peremen haladunk végig és a felület bal kéz felől esik (jobbkézszabály)".
 +
 +
===Végtelen hosszú egyenes vezető keltette mágneses mező rotációja és cirkulációja===
  
 
A tétel alkalmazására a következő hengerszimmetrikus esetet nézzük.
 
A tétel alkalmazására a következő hengerszimmetrikus esetet nézzük.
749. sor: 762. sor:
 
a vektormező és a felület az [xy] sík egy olyan ''tetszőleges'' T mérhető tartománya, mely a belsejében tartalmazza az origót és a pereme a G zárt görbe. Igazoljuk ekkor, hogy G-re az integrál 2&pi;.
 
a vektormező és a felület az [xy] sík egy olyan ''tetszőleges'' T mérhető tartománya, mely a belsejében tartalmazza az origót és a pereme a G zárt görbe. Igazoljuk ekkor, hogy G-re az integrál 2&pi;.
  
Először kiszámítjuk a vektromező rotációját. Ehhez felhasználjuk a rotációra vonatkozókövetkező azonosságot:
+
Először kiszámítjuk a vektormező rotációját. Ehhez felhasználjuk a rotációra vonatkozókövetkező azonosságot:
 
:<math>\mathbf{rot}\,(\Phi\mathbf{u})=\mathbf{rot}(\mathbf{u})\cdot \Phi+\mathrm{grad}\Phi\times\mathbf{u}</math>
 
:<math>\mathbf{rot}\,(\Phi\mathbf{u})=\mathbf{rot}(\mathbf{u})\cdot \Phi+\mathrm{grad}\Phi\times\mathbf{u}</math>
  
762. sor: 775. sor:
 
:<math>\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial K}\frac{1}{R}|\mathrm{d}\mathbf{r}|=\frac{1}{R}2\pi R=2\pi</math>
 
:<math>\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial K}\frac{1}{R}|\mathrm{d}\mathbf{r}|=\frac{1}{R}2\pi R=2\pi</math>
 
(Itt lényegében a végtelen hosszú egyenes vezető körüli görbén a mágneses indukció körintegrálját határoztuk meg.)
 
(Itt lényegében a végtelen hosszú egyenes vezető körüli görbén a mágneses indukció körintegrálját határoztuk meg.)
 +
 
==CROSS és alkalmazása és a Green-tétel==
 
==CROSS és alkalmazása és a Green-tétel==
 
'''Definíció.''' A '''kettő vagy háromdimenziós térben''' CROSS a következő lineáris ill. bilineáris leképezés:
 
'''Definíció.''' A '''kettő vagy háromdimenziós térben''' CROSS a következő lineáris ill. bilineáris leképezés:
797. sor: 811. sor:
 
Tudjuk, hogy ha '''v''' differenciálható vektorfüggvény, akkor az '''r'''<sub>0</sub> pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező '''A''' lineáris leképezést értjük, melyre:
 
Tudjuk, hogy ha '''v''' differenciálható vektorfüggvény, akkor az '''r'''<sub>0</sub> pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező '''A''' lineáris leképezést értjük, melyre:
 
:<math>\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}</math>
 
:<math>\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}</math>
Minthogy az '''A''' deriválttenzor linerási leképezés, ezért érdemes külön elnevezni az invariánsait ('''h''' tetszőleges vektora a térnek):
+
Minthogy az '''A''' deriválttenzor lineáris leképezés, ezért érdemes külön elnevezni az invariánsait ('''h''' tetszőleges vektora a térnek):
 
:<math>\mathbf{A}\mathbf{h}=\mathbf{A}_s\mathbf{h}+\left.\frac{1}{2}\mathbf{rot}(\mathbf{v})\right|_{\mathbf{r_0}}\times\mathbf{h}</math>
 
:<math>\mathbf{A}\mathbf{h}=\mathbf{A}_s\mathbf{h}+\left.\frac{1}{2}\mathbf{rot}(\mathbf{v})\right|_{\mathbf{r_0}}\times\mathbf{h}</math>
 
azaz '''A''' vektorinvariánsának duplája a rotáció.'''A'''<sub>s</sub> a derivált leképezés szimmetrikus része. A divergencia a skalárinvariáns:
 
azaz '''A''' vektorinvariánsának duplája a rotáció.'''A'''<sub>s</sub> a derivált leképezés szimmetrikus része. A divergencia a skalárinvariáns:
805. sor: 819. sor:
 
\frac{\partial v_2}{\partial x}& \frac{\partial v_2}{\partial y}& \frac{\partial v_2}{\partial z}\\
 
\frac{\partial v_2}{\partial x}& \frac{\partial v_2}{\partial y}& \frac{\partial v_2}{\partial z}\\
 
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}</math>
 
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}</math>
 +
 
===Integrálok kiszámítási formulái===
 
===Integrálok kiszámítási formulái===
 
Felszín szerinti intergálok:
 
Felszín szerinti intergálok:
849. sor: 864. sor:
 
Ezután pedig felhasználjuk, hogy a két integrál ugyanarra a tartományra vett kettősintegrál:
 
Ezután pedig felhasználjuk, hogy a két integrál ugyanarra a tartományra vett kettősintegrál:
 
:<math>\int\limits_{T}\frac{\partial Q}{\partial x}dxdy-\int\limits_{T}\frac{\partial P}{\partial y}dxdy=\int\limits_{T}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dxdy</math>
 
:<math>\int\limits_{T}\frac{\partial Q}{\partial x}dxdy-\int\limits_{T}\frac{\partial P}{\partial y}dxdy=\int\limits_{T}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dxdy</math>
A tétel érvényes minden ''n''-szeresen összefüggő tartományra is (az ''n-1'' db lyukat tartalmazó kilyukasztott körlappal homeomor tartományokra), mert egyfelől változatlan marad, ha görbevonalú háromszögre térünk át (integráltranszformációval), másfelől minden ''n''-szeresen összefüggő tartomány felbontható véges sok görbevonalú háromszögre, ahol az integrálok összegében a belső szakaszok eltűnnek és a tétel szintén érvényben marad.  
+
A tétel érvényes minden ''n''-szeresen összefüggő tartományra is (az ''n-1'' db lyukat tartalmazó kilyukasztott körlappal homeomorf tartományokra), mert egyfelől változatlan marad, ha görbevonalú háromszögre térünk át (integráltranszformációval), másfelől minden ''n''-szeresen összefüggő tartomány felbontható véges sok görbevonalú háromszögre, ahol az integrálok összegében a belső szakaszok eltűnnek és a tétel szintén érvényben marad.  
  
A Green-tétel a (háromdimenziós) Stokes-tétel speciális esete, hiszen a (P,Q,0) vektormező rotációja pont (0,0,&part;<sub>x</sub>Q-&part;<sub>y</sub>P). A Green-tételből levezethető a kétdimenziós Gauss-tétel, a következőképpen. Legyen T a síkbeli peremes tartomány és &part;T a pereme mint pozitívan irányított zárt görbe. Ekkor a Q:=P, P:=-Q szereposztással felírva a Green-tételt:
+
A Green-tétel a (háromdimenziós) Stokes-tétel speciális esete, hiszen a (P,Q,0) vektormező rotációja pont (0,0,&part;<sub>x</sub>Q-&part;<sub>y</sub>P). A Green-tételből levezethető a kétdimenziós Gauss-tétel, a következőképpen. Legyen T a síkbeli peremes tartomány és &part;T a pereme mint pozitívan irányított zárt görbe (ill. véges sok görbe diszjunkt úniója, ha ''n''-szeresen összefüggő, ''n''>1). Ekkor a Q:=P, P:=-Q szereposztással felírva a Green-tételt:
 
:<math>\oint\limits_{\partial T} -Qdx+Pdy=\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy</math>
 
:<math>\oint\limits_{\partial T} -Qdx+Pdy=\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy</math>
 
Itt a baloldali integrandus a (P,Q) vektormező cross-ja, ami viszont a &part;T-re, mint valódi felületre vett integrál ellenkezője:
 
Itt a baloldali integrandus a (P,Q) vektormező cross-ja, ami viszont a &part;T-re, mint valódi felületre vett integrál ellenkezője:
 
:<math>\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy=\oint\limits_{\partial T} -Qdx+Pdy=\oint\limits_{\partial T} \mathsf{cross}(P,Q) dr=\oint\limits_{-\partial T} (P,Q) df</math>
 
:<math>\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy=\oint\limits_{\partial T} -Qdx+Pdy=\oint\limits_{\partial T} \mathsf{cross}(P,Q) dr=\oint\limits_{-\partial T} (P,Q) df</math>
 
ahol persze &part;<sub>x</sub>P+&part;<sub>y</sub>Q=div(P,Q) és a -&part;T valódi felület a tartományból kifelé van irányítva.
 
ahol persze &part;<sub>x</sub>P+&part;<sub>y</sub>Q=div(P,Q) és a -&part;T valódi felület a tartományból kifelé van irányítva.

A lap jelenlegi, 2018. június 16., 18:16-kori változata

Tartalomjegyzék

Egzakt differenciálegyenlet

Definíció

Legyen U ⊆ R2 nyílt halmaz és P,Q: U \to R folytonos függvények, Q sehol sem nulla. Azt mondjuk, hogy az

y'=-\frac{P(x,y)}{Q(x,y)}\quad\quad \mathrm{(EX)}

differenciálegyenlet egzakt, ha létezik olyan F: U \to R folytonosan differenciálható függvény, hogy

\frac{\partial F}{\partial x}=P,\quad\quad\frac{\partial F}{\partial y}=Q\quad\quad\mathrm{(C)}

Elméleti példa. Minden

y'=\frac{f(x)}{g(y)}\quad\quad (f\in\mathrm{C}(I),\;g\in \mathrm{C}(J),\;0\notin\mathrm{Ran}(g))

alakú szeparábilis differenciálegyenlet egzakt, hiszen ha g integrálfüggvénye G, akkor

g(y)y'=f(x)\quad\quad\Rightarrow\quad\quad G(y)=F(x)+C

Alkalmas tehát az alábbi függvény:

\Phi(x,y):=G(y)-F(x)=C\quad\quad\Rightarrow\quad\quad\frac{\partial \Phi}{\partial x}=f,\quad\quad\frac{\partial \Phi}{\partial y}=g

Jelen esetben a G függvény deriváltja (G'=g) sehol sem nulla folytonos függvény, ezért szigorúan monoton. Emiatt kifejezhető y éspedig:

y(x)=G^{-1}(F(x)+C)\,

Megjegyzés. A megoldásokat implicit módon adja meg az

\Phi(x,y)=C\,

egyenlet. Mivel

\frac{\partial\Phi}{\partial y}\ne 0

ezért az implicitfüggvény-tétel miatt y-t "ki lehet fejezni". Érdemes felelevenítenünk magát az implicitfüggvény-tételt:

Implicitfüggvény-tétel -- Ha a Φ: I×J \to R folytonosan differenciálható függvény az (x0,y0) ∈ int(I×J) pontban teljesíti a ∂Φ/∂y ≠ 0 feltételt, akkor a (x0,y0) pont egy környezetében egyértelműen létezik az Φ(x,y)=Φ(x0,y0) egyenletnek az (x0,y0) ponton áthaladó implicit függvénye, azaz az x0 egy KI környezetében értelmezett, J-beli értékű y deriválható függvény, melyre minden xK esetén:

\Phi(x,y(x))=\Phi(x_0,y_0)\,, y(x_0)=y_0\,

és ennek deriváltja minden xK-ban:

y'(x)=-\left.\frac{\;\frac{\partial\Phi}{\partial x}\;}{\frac{\partial \Phi}{\partial{y}}}\right|_{(x,y(x))}

Egzakt egyenlet egzisztencia- és unicitástétele

Tétel. Legyenek P és Q az UR2 nyílt halmazon értelmezett folytonos valós függvények, Q sehol se nulla, grad F = (P,Q) valamely F: U \to R folytonosan differenciálható függvénnyel és (x0,y0)U. Ekkor

1) az

(ex) y'=-P/Q

egyenletnek egyértelműen létezik az y0 = y(x0) kezdeti feltételt kielégítő y lokális megoldása és

2) az

(impl) F(x,y) = F(x0,y0)

egyenlet (x0,y0)-on áthaladó egyetlen lokális implicit függvénye az (ex) egyenlet y(x0) = y0 kezdeti feltételt kielégítő egyetlen lokális megoldása.

Biz. 1) Egzisztencia. Belátjuk, hogy (impl) egyetlen (x0,y0)-on áthaladó implicit függvénye megoldása az (ex) egyenletnek.

\left.\frac{\partial F}{\partial y}\right|_{(x_0,y_0)}=Q(x_0,y_0)\ne 0

így az implicitfüggvény-tétel szerint, egyértelműen létezik F-nek y=y(x) implicit függvénye az adott pont egy környezetében és ennek deriváltja az értelmezési tartományának minden pontjában:

y'(x)=-\frac{\;\cfrac{\partial F}{\partial x}(x,y(x))\;}{\cfrac{\partial F}{\partial y}(x,y(x))}=-\frac{P(x,y(x))}{Q(x,y(x))}

tehát y az (ex) differenciálegyenletnek is megoldása, és ez kielégíti a kezdeti feltételt.

Unicitás. Tegyük fel, hogy létezik megoldása a kezdeti érték feladatnak. Legyen egy tetszőleges megoldása y, azaz

y'(x)=-\frac{P(x,y(x))}{Q(x,y(x))}

Ez az egyenlet a grad F = (P,Q) miatt előáll

\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0

alakban. Most belátjuk, hogy y (impl)-nek implicit megoldása. Az összetett függvény differenciálási szabálya miatt ( d(F\circG)(x,y)=dF(G(x,y))\circ dG(x,y) ) az előző egyenlet a következő formában is írható:

(F(x,y(x)))'=[\mathrm{grad}\,F|_{(x,y(x))}]\cdot\begin{bmatrix}x'\\y'(x)\end{bmatrix}=\frac{\partial F}{\partial x}|_{(x,y(x))}+y'\frac{\partial F}{\partial y}|_{(x,y(x))}\equiv 0\,

x értékei egy intervallumból kerülnek ki, ezért az integrálszámítás alaptétele szerint az x \mapsto F(x,y(x)) egy konstans függvény. De a feltétel szerint y(x0) = y0 teljesül, ezért x \mapsto y(x) egy (x0,y0)-on áthaladó implicit függvénye az F(x,y)=F(x0,y0) egyenletnek. Ez az utóbbi azonban egyértelműen van meghatározva, ezért a kezdeti érték feladat minden megoldása egybeesik ezzel az implicit függvénnyel, azaz a megoldás egyértelmű.

2) Az implicitfüggvény tételében adott egyetlen implicit függvény az 1) egzisztencia része miatt megoldása (ex)-nek és 1) unicitás része miatt ez az egyetlen megoldása (ex)-nek.

Az egzaktság jellemzése

Megjegyzés. Az egzakt differenciálegyenletet még

P(x,y)+Q(x,y)y'=0\, ill. P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y=0\,

alakban is szokás írni.

Ez utóbbi egyenletről azt is mondják, hogy akkor egzakt, ha a P(x,y)dx + Q(x,y)dy kifejezés "teljes differenciál", amin azt értik, hogy létezik olyan F(x,y) függvény, melynek teljes differenciálja:

\mathrm{d}F(x,y)=P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y\,

Ezt a mai jelölésekkel a következőképpen írjuk. Egy F kétváltozós függvény teljes differenciálja egy lineáris leképezés, mely a sztenderd {(1,0),(0,1)} bázisban felírt koordinátáival nem más, mit a parciális deriváltjainak sormátrixa:

[\mathrm{d}F(x,y)]=\mathrm{grad}\,F(x,y)=\left[\;\frac{\partial F}{\partial x}\;,\;\frac{\partial F}{\partial y}\;\right]

Emiatt a (C) feltétel a következő alakban is írható:

[\mathrm{d}F]=\left[P,Q\right]\, ill. \mathrm{grad}\,F=[P,Q]\,

Tehát az egzakt egyenletben a (P,Q) vektormező (vektorértékű függvény) potenciálos. Innen hasznos jellemzést kapunk az egzaktságra a vektoranalízisbeli ismereteinkből.

Tétel. Legyen U egyszeresen összefüggő nyílt halmaz, P,Q: U \to R folytonosan differenciálható függvények (Q sehol sem nulla). A Pdx + Qdy = 0 egyenlet pontosan akkor egzakt, ha

\frac{\partial P}{\partial y}\equiv\frac{\partial Q}{\partial x}

Az F függvényt, az Pdx + Qdy = 0 egyenlet integráljának nevezzük.

Ezt a tételt jól ismerjük és a bizonyítását a vektoranalízisben vettük.

Megjegyzés. 1) A feltétel nem más, mint az, hogy a (P,Q) síkbeli vektormező rotációja azonosan nulla. Ugyanis a rotáció a síkbeli (P,Q) vektormező esetén:

\mathrm{rot}\,(P,Q)=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}

2) Bár a szeparábilis egyenlet egzakt, a fenti feltétel az egzaktság ellenőrzésére sokkal szigorúbb mint a szeparábilis egyenlet megoldhatóságának feltétele.

Lineáris differenciálegyenletek

Inhomogén lineáris egyenlet megoldásai

Tétel. Ha V, W tetszőleges lineáris tér, A ∈ Lin(V,W) lineáris operátor, bW. Ha x0V megoldása az Ax = b inhomogén egyenletnek, akkor az

\mathbf{A}x=b\,

összes megoldásainak halmaza:

M=\{x+x_0\in V\mid x\in\mathrm{Ker}(\mathbf{A})\}

Bizonyítás. 1) Ha x ∈ Ker(A), akkor Ax = 0. Ekkor

\mathbf{A}(x+x_0)= \mathbf{A}x+\mathbf{A}x_0=0+b=b\,

azaz ekkor x+x0 ∈ M.

2) Ha

\mathbf{A}(x+x_0)=b\, és \mathbf{A}x_0=b\,

akkor

\mathbf{A}x=\mathbf{A}(x+x_0-x_0)=\mathbf{A}(x+x_0)-\mathbf{A}x_0=b-b=0\,

tehát x ∈ Ker(A). QED.

Megjegyzés. Tudjuk tehát akármilyen lineáris térben az inhomogén egyenlet összes megoldását, ha ismert egy megoldása. Ha tehát Ax=b lineáris differenciálegyenlet, akkor a tétel azt a szlogent fejezi ki, hogy inhomogén lineáris differenciálegyenlet általános megoldása egyenlő a homogén egyenlet általános megoldása plusz az inhomogén egyenlet egy partikuláris megoldása.

Elsőrendű inh. lin. diff. egyenlet és az állandó variálása

Állítás. Ha f: I \to R folytonos függvény akkor az

\mathbf{A}y=y'+f\cdot y\,\quad\quad(y\in\mathrm{C}^1(I))

lineáris operátor a Lin(C1(I),C(I)) téren.

Bizonyítás.

\mathbf{A}(\lambda y_1+\mu y_2)=(\lambda .y_1+\mu .y_2)'+f\cdot(\lambda .y_1+\mu .y_2)=
=\lambda y_1'+\mu y_2'+\lambda f\cdot y_1+\mu f\cdot y_2=\lambda.\mathbf{A}(y_1)+\mu.\mathbf{A}(y_2)

Következmény. A fenti jelölésekkel, tetszőleges g folytonos függvényre, ha y0 a

y'+f\cdot y+g=0\,\quad\quad(?=y\in\mathrm{C}^1(I))

differenciálegyenlet egy megoldása, akkor az egyenlet általános megoldása egyenlő a

y'+f\cdot y=0\,\quad\quad(?=y\in\mathrm{C}^1(I))

homogén egyenlet általános megoldása plusz y0.

Példa. Oldjuk meg az

y'+\frac{y}{x}=\sin(x^2)\,

egyenletet! A partikuláris megoldást keressük az állandók variálása módszerével!

Másodrendű, áll. ehós hom. egyenlet

Tétel. Ha a,b ∈ R, akkor az

\mathbf{A}y=y''+ay'+by\quad\quad(y\in\mathrm{C}^2(I))

C2(I) \to C(I) lineáris operátor magja kétdimenziós.

Megoldás. A bizonyítás két részből fog állni. Először is Laplace-transzformációval belátjuk, hogy ha dim Ker(A) legalább kettő, akkor legfeljebb 2. Másodszor pedig mutatunk 2 lineárisan független megoldást.

Bizonyítás nélkül elfogadjuk azt a tényt, hogy ha ezen egyenlet esetén egy adott pontban kezdeti értéket adunk az y-nak és az y'-nek akkor a megoldás (ha van) egyértelmű. Szemléletes képpel, ez azt jelenti, hogy ha a kezdőfázist és a sebességet megadjuk, akkor azzal a teljes hullámformát megkapjuk.

I. Legyen y1 és y2 két lineárisan független megolása az

A y = 0

egyenletnek és legyen y ∈ Ker(A) tetszőleges. Rögzítsünk egy x0 ∈ I helyet, melyen y(x0) = u és y'(x0) = v. Elő fogjuk állítani ezt a partikuláris megoldást a két előbbi megoldás lineáris kombinációjaként. Legyenek:

y_1(x_0)=u_1,\quad y_1'=v_1
y_2(x_0)=u_2,\quad y_1'=v_2

azt kívánjuk elérni, hogy az

αu1 + βu2 = u
αv1 + βv2 = v

egyenletrendszernek legyen egyértelmű megoldása (α,β)-ra. Ez pontosan akkor van, ha a

W^{\mathbf{A}}(x_0)=\begin{vmatrix}y_1(x_0) & y_2(x_0)\\y_1'(x_0) & y_2'(x_0)\end{vmatrix}=\begin{vmatrix}u_1 & u_2\\v_1 & v_2\end{vmatrix}=u_1v_2 -u_2v_1

determináns (azaz az egyenletrendszer x0-beli Wronsky-determinánsa) nem nulla. Hiszen ekkor a megoldás egyértelműsége miatt (azaz, hogy u és v egyértelműen meghatározza y-t) azt kapjuk, hogy (α,β) "globális konstansok is", azaz αy1 + βy2 = y.

Az egyenlet Laplace-transzformáltja:

s^2Y-su_0-v_0+a(sY-u_0)+bY=0\,
Y_1(s^2+as+b)-su_1-v_1-au_1=0\quad\quad/\cdot v_2
Y_2(s^2+as+b)-su_2-v_2-au_2=0\quad\quad/\cdot v_1
(s2 + as + b)(v2Y1v1Y2) + (s + a)(u2v1u1v2) = 0

Ennek az egyenletnek minden s-re fenn kell állnia, ezért ha u2v1u1v2 = 0 lenne, akkor v2Y1v1Y2 = 0 is lenne (minden s-re), azaz Y2 és Y1 lineárisan kifejezhetők lennének egymással, ami ellentmondana a rájuk tett kezdeti feltevésnek.

II. A megoldéskeresési feladatot kicsit bővebb körben, a valós változós, komplex értékű kétszer folytonosan R-differenciálható függvények körében oldjuk meg. Tehát ekkor A a C2(I,C) térből a C(I,C) térbe hat. Ezek között fogunk valós megoldás keresni. A differenciáloperátornak sajátfüggvénye az exponenciális függvény, így tetszőleges λ ∈ C

\,y(x)=e^{x\lambda}\in\mathbf{C}\quad\quad(x\in \mathbf{R})

próbafüggvény behelyettesítésével kapjuk:

\lambda^2+a\lambda+b=0\,

Tehát a megoldások:

1. ha λ1 ≠ λ2 valósak, akkor

\{e^{\lambda_1x},e^{\lambda_2x}\}

bázis, mert lineárisan függetlenek és éppen ezért I. miatt előállítják Ker(A)-t:

\mathrm{Ker}(\mathbf{A})=\{C_1e^{\lambda_1 x}+C_2e^{\lambda_2 x}\mid C_1,C_2\in\mathbf{R}\}

2. ha λ1 = λ2 valósak, akkor keresnünk kell mégegy az eλx-től lineárisan független megoldást.

y_2(x)=xe^{\lambda x}\,

Világos, hogy ez az, hiszen a C_1e^{\lambda x}+C_2xe^{\lambda x}\equiv 0 egyenletet eλx-vel leosztva, a polinom balodalú C_1+C_2x\equiv 0 adódna, ami csak akkor lehet a nullapolinom, ha az ehók mind nullák.

\mathrm{Ker}(\mathbf{A})=\{C_1e^{\lambda x}+C_2xe^{\lambda x}\mid C_1,C_2\in\mathbf{R}\}

3. ha λ = α  \pm βi nemvalós, akkor

f_1(x)=e^{x(\alpha+i\beta)},\quad\quad f_2(x)=e^{x(\alpha-i\beta)}

azaz

f_1(x)=e^{\alpha x}(\cos(\beta)+i\sin(\beta)),\quad\quad f_2(x)=e^{\alpha x}(\cos(\beta)-i\sin(\beta))

megoldások, melyek azonban komplexek. De ezeket összeadva, illetve a különbségüket i-vel beszorozva már valós megoldásokat kapunk (ezek az előbbi végzett műveletek lineárisak voltak, így a függvények megoldás mivoltán nem változtattak). Azaz:

y_1(x)=e^{\alpha x}\cos(\beta),\quad\quad y_2(x)=e^{\alpha x}\sin(\beta)

a tér pedig:

\mathrm{Ker}(\mathbf{A})=\{C_1e^{\alpha x}\cos(\beta)+C_2e^{\alpha x}\sin(\beta)\mid C_1,C_2\in\mathbf{R}\}

bázis, mert lineárisan függetlenek és éppen ezért I. miatt előállítják Ker(A)-t.


A deriválttenzor invariánsai

Tudjuk, hogy ha v differenciálható vektorfüggvény, akkor az r0 pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező A lineáris leképezést értjük, melyre:

\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}

Minthogy az A deriválttenzor maga is tenzor, ezért érdemes külön elnevezni az invariánsait (h tetszőleges vektora a térnek):

\mathbf{A}\mathbf{h}=\mathbf{A}_s\mathbf{h}+\left.\frac{1}{2}\mathbf{rot}(\mathbf{v})\right|_{\mathbf{r_0}}\times\mathbf{h}

azaz A vektorinvariánsának duplája a rotáció. A divergencia a skalárinvariáns:

\mathrm{div}(\mathbf{v})=\mathrm{Sp}(\mathbf{A})

Világos, hogy ebből úgy lesznek a parciális deriváltakkal definiált alakok, ha az A sztenderd bázisbeli mátrixát, azaz a J Jacobi mátrixot írjuk fel. Ekkor mindkét említett differenciáloperátort a szokásos alakjában kapjuk:

\mathrm{J}=\begin{pmatrix}\frac{\partial v_1}{\partial x}& \frac{\partial v_1}{\partial y}& \frac{\partial v_1}{\partial z}\\
\frac{\partial v_2}{\partial x}& \frac{\partial v_2}{\partial y}& \frac{\partial v_2}{\partial z}\\
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}

Megjegyzés. A főtengelytételből következik, hogy hogyan jellemezhető az az eset, amikor az A deriváltenzor főtengelyre transzformálható. Ez pontosan akkor van, amikor rot(v)=0.

Potenciál

A továbbiakban feltesszük, hogy a v vektorfüggvény folytonosan differenciálható.

Azt mondjuk, hogy a v vektorfüggvény potenciálos, ha van olyan u skalárfüggvény, mely differenciálható és

\mathrm{grad}\,u=\mathbf{v}

A v vektorfüggvény cirkulációja a Γ egyszerű zárt görbén a

\oint\limits_{\Gamma}\mathbf{v}\,\mathrm{d}\mathbf{r}

vonalintegrál.

Jellemzés

A potenciálosság rendkívül szoros kapcsolatban van a cirkulációval és a rotációval:

Tétel. Ha v folyt. diff. vektormező az A egyszeresen összefüggő tartományon. Ekkor az alábbi három kijelentés egymással egyenértékű (v folyt. diff. vektormező):

  1. v potenciálos,
  2. v rotációja minden pontban nulla,
  3. v cirkulációja minden zárt görbére nulla (más kifejezéssel: v konzetvatív).

Bizonyítás.

1. --> 2. Tegyük fel, hogy grad u = v, így rot v = rot grad u. Ekkor formálisan hivatkozhatunk például a vektoriális szorzás azon szabályára, hogy párhuzamos vektorok vektoriális szorzata 0, hisz

\mathrm{rot}(\mathrm{grad}\,u)=\underline{\nabla}\times\underline{\nabla} u

De itt végül is a Young-tételről van szó. Komponensenként kiírva:

\underline{\nabla}\times\underline{\nabla} u=
\begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k}\\
\partial_1 & \partial_2 & \partial_3 \\
\partial_1 & \partial_2 & \partial_3 
\end{vmatrix}\,u=\mathbf{i}(\partial_2\partial_3 u-\partial_3\partial_2u)+ ...

kétszer folytonsan differenciálható u Hesse-mátrixa szimmertikus, azaz a vegyes másodrendű parciális deriváltak egyenlők, azaz a fenti összeg 0.

2. --> 3. Itt a Stokes-tételre kell hivatkoznunk:

\oint\limits_{\partial F}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{F}\mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{f}

egyszeresen összefüggő tartományban haladó Γ = ∂F görbére és tetszőleges olyan F felületre, melynek ő a pereme. De rot v mindenhol 0. így a jobb oldal 0, azaz cirkuláció is.

3. --> 1. Belátjuk, hogy van potenciál. Legyen a rögzített pont és b tetszőlegesen választott. Legyen Γ1 és Γ2 két tetszőleges görbe, mely a-ból b-be megy. Ekkor az egyszeres összefüggőség miatt a Γ2 -t visszfelé irányítva:

\Gamma=\Gamma_1^\frown(-\Gamma_2)

az a zárt görbe, mely az a-ból megy a Γ1 mentén a b-be és a b-ből megy a Γ2 mentén, de ellenkezőleg irányítva az a-ba. De v minden körintegrálj eltűnik, így

0=\oint\limits_{\Gamma}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\Gamma_1}\mathbf{v}\,\mathrm{d}\mathbf{r}+\int\limits_{-\Gamma_2}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\Gamma_1}\mathbf{v}\,\mathrm{d}\mathbf{r}-\int\limits_{\Gamma_2}\mathbf{v}\,\mathrm{d}\mathbf{r}

azaz

\int\limits_{\Gamma_1}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\Gamma_2}\mathbf{v}\,\mathrm{d}\mathbf{r}

Tehát az

u(x)=\int\limits_{(\gamma)\;a}^{x}\mathbf{v}\,\mathrm{d}\mathbf{r}

skalárfüggvény független az úttól és a felső határ szerinti gradiense ugyanúgy az integrandus, mint az egyváltozós valós függvények esetén. QED.

Gradiensre vonatkozó integráltétel

Az előbb említett, az integrálfüggvény deriválhatóságának tételének megvan a párja is. Ez az első gradienstétel, mely végül is nem más, mint a Newton--Leibniz-formula többdimenziós általánosításai közül a legelső verzió:

Tétel.

u(b)-u(a)=\int\limits_{(\Gamma)\;a}^{b}\mathrm{grad}(u)\,\mathrm{d}\mathbf{r}

(ha u folyt. diff. és egysz. öf. tartományon ért.)

A tétel beleillik a "nagy integrálátalakító tételek" sorába (Stokes-tétel, Gauss--Osztrogradszkij-tétel és most az I. gradienstétel), melyek alapszlogenje, hogy "integrál a peremen = a derivált integrálja belül", persze itt a perem az {a,b} véges halmaz, a derivált a gradiens, a "belül" pedig a Γ görbe. (S.-t-nél felület a belső, a határán futó zárt görbe a perem és rot a derivált, G--O-t nél térrész a belső, az őt határoló zárt felület a perem és div a derivált).

Potenciálkeresés. 1) Pancsolásos módszer és variánsai (alkalmazások: egzakt differenciálegyenlet megoldása, harmonikus társ keresése) 2) integrálás és az I. grad. tétel alkalmazása 3) invariáns alakban adott feldatoknál primitívfüggvény keresés.

Hossz n-edik deriváltja

Ez utóbbi megoldáshoz tudnunk kell, hogy a hossz n-edik deriváltja mi. Ezt a többváltozós függvények analízisében az összetett függvény deriválásánál tanultuk: ha r nem nulla, akkor

\mathrm{grad} |\mathbf{r}|^n =n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}

mert a külső függvény: t\mapsto t^n, a belső pedig \mathbf{r}\mapsto |\mathbf{r}|. Az utóbbi deriváltja koordinátás alakban:

\mathrm{grad}\,\sqrt{x_1^2+x_2^2+...+x_m^2}=(\frac{2x_1}{2\sqrt{x_1^2+x_2^2+...+x_m^2}}, ..., \frac{2x_m}{2\sqrt{x_1^2+x_2^2+...+x_m^2}})=\frac{(x_1,x_2, ..., x_m}{\sqrt{x_1^2+x_2^2+...+x_m^2}}

tehát a függvénykompozíció deriválására vonatkozó tétel szerint:

\mathrm{grad} (f(\Phi(\mathbf{r})))=f'(\Phi(\mathbf{r}))\cdot\mathrm{grad}\Phi(\mathbf{r})=n|\mathbf{r}|^{n-1}\frac{\mathbf{r}}{|\mathbf{r}|}


Felületi integrál, Gauss-tétel

Definíció. Legyen \mathbf{v} vektormező, mely \mathbf{R}^3 egy nyílt D tartományán értelmezett. Legyen \mathbf{r}:T\to D,\quad (u,v)\mapsto\mathbf{r}(u,v) folytonosan differenciálható függvény, melynek értelmezési tartománya a T mérhető síktartomány. Ekkor a vektorfüggvény integrálját és létezését a felület mentén a következő limesszel definiáljuk:

\exists\int\limits_{\mathrm{Ran}(\mathbf{r})}\mathbf{v}\,\mathrm{d}\mathbf{F}=L\quad\quad\Longleftrightarrow\quad\quad\sum\limits_{i=1}^n\mathbf{v}(\mathbf{r}_i)\Delta\mathbf{F}_{i}\underset{\begin{matrix}n\to \infty\\\mathbf{r}_i\in F\\|\Delta\mathbf{F}_{i}|\to 0\end{matrix}}{\longrightarrow} L\in \mathbf{R}

Itt tehát T-t egymásba nem nyúló, mérhető Ii síktartományokra bontjuk fel, amelyek ármérője egyre csökken. Az integrál létezésére és értékére az alábbi egyszerű kritériumot és tartományi integrált írhatjuk föl. Legyen \mathbf{r}:T\to D,\quad (u,v)\mapsto\mathbf{r}(u,v) folytonosan differenciálható függvény, melynek értelmezési tartománya a T mérhető síktartomány. Ekkor az \mathbf{r}(u,v) deriváltjai léteznek, a felületi integrál létezik és felírható

\int\limits_{F}\mathbf{v}\,\mathrm{d}\mathbf{F}=\int\limits_{T_{u,v}}\mathbf{v}(\mathbf{r}(u,v))\cdot \frac{\partial \mathbf{r}(u,v)}{\partial u}\times\frac{\partial \mathbf{r}(u,v)}{\partial v}\,\mathrm{d}u\,\mathrm{d}v

Ha a skaláris szorzat invariáns értelmezését vesszük, akkor a fenti formulát még a következőképpen is felírhatjuk:

\int\limits_{G}\mathbf{v}\,\mathrm{d}\mathbf{f}=\int\limits_{G}v_{\perp}\,|\mathrm{d}\mathbf{f}|

ahol v_\perp =\mathbf{v}\cdot \frac{\mathbf{n}}{|\mathbf{n}|} , azaz a felületi integrál egyenlő a vektormezőnek a felületi érintősík normálisa irányába eső előjeles komponense ugyanazon felületre vonatkozó felszín szerinti integráljával.

Megjegyzendő, hogy a képletben szereplő vegyes szorzat értéke 3\times 3-as determinánsként számítható ki a komponenseiből:

\mathbf{v}(\mathbf{r}(u,v))\cdot \frac{\partial \mathbf{r}(u,v)}{\partial u}\times\frac{\partial \mathbf{r}(u,v)}{\partial v}=\begin{vmatrix}\quad[\mathbf{v}(\mathbf{r}(u,v))]\quad\\\\
\left[\frac{\partial \mathbf{r}(u,v)}{\partial u}\right]\\\\
\left[\frac{\partial \mathbf{r}(u,v)}{\partial v}\right]\end{vmatrix}

Tétel -- Gauss-Osztrogradszkíj -- Legyen \mathbf{v}:D\to \mathbf{R}^3 folytonosan differenciálható vektormező, D\subseteq \mathbf{R}^3 tartomány és legyen V a D-ben lévő mérhető térrész, melynek pereme az \partial V=F\subseteq D zárt felület a térrészből kifelé mutató irányítással. Ekkor


\oint\limits_{\partial V}\mathbf{v}\,\mathrm{d}\mathbf{F}=\int\limits_{V}\mathrm{div}\,\mathbf{v}\,\mathrm{d}V

A tétel fontos alkalmazása a gömbszimmetrikus vektormezők felületi integráljának kiszámítása, ezek közül is a legfontosabb a reciproknégyzetes erősségű vektormezők.

A ponttöltés keltette elektromos mező divergenciája, fluxusa

Számítsuk ki a

\mathbf{v}=\frac{\mathbf{r}}{|\mathbf{r}|^3}

vektormező integrálját a tetszőleges Γ zárt felületre, mely az origót belsejében tartalmazó V kompakt tartomány pereme, kifelé irányítva!

Először kiszámítjuk a vektoremző divergenciáját ott, ahol értelmezve van:

\mathrm{div}\,\mathbf{v}=\mathrm{div}\,(\mathbf{r}|\mathbf{r}|^{-3})=3|\mathbf{r}|^{-3}+\mathbf{r}(-3)|\mathbf{r}|^{-4}\frac{\mathbf{r}}{|\mathbf{r}|}=0

Itt felhasználtuk a divergenciára vontkozó szorzási szabályt.

Az integrál előállítható egy a v értelmezési tartományába eső tartomány peremére és egy másik felületre vonatkozó felületi integrálként. Legyen ugyanis G az origó középpontú olyan R sugarú gömb, mely benne van V belsejében és D az a tartomány pedig legyen V minusz G. Ekkor

\int_{\partial D} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int_{\partial V} \mathbf{v}\,\mathrm{d}\mathbf{f}+\int_{-\partial G} \mathbf{v}\,\mathrm{d}\mathbf{f}

azaz

\int_{\partial V} \mathbf{v}\,\mathrm{d}\mathbf{f}= \int_{\partial D} \mathbf{v}\,\mathrm{d}\mathbf{f}+\int_{\partial G} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int_{D} \mathrm{div}(\mathbf{v})\,\mathrm{d}\mathrm{V}+\int_{\partial G} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int_{\partial G} \mathbf{v}\,\mathrm{d}\mathbf{f}

Tehát csak G határára kell kiszámítani a vektormező fluxusát. Ezt az invariáns formulával tesszük:

\int_{\partial G} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int_{\partial G} \frac{1}{R^2}\,|\mathrm{d}\mathbf{f}|=\frac{1}{R^2}\int_{\partial G} \,|\mathrm{d}\mathbf{f}|=4\pi

(Imént lényegében az elektrosztatikus Gauss-törtvény állítását vezettük le a Coulomb-törvényből)

Vonalintegrál, Stokes-tétel

Legyen \mathbf{v} vektormező, mely \mathbf{R}^n egy nyílt D tartományán értelmezett. Legyen \Gamma:[a,b]\to D,\quad t\mapsto\mathbf{r}(t) folytonosan differenciálható függvény. Ekkor a vektormező integrálját és létezését a görbe mentén a következő limesszel definiáljuk:

\exists\int\limits_{\Gamma}\mathbf{v}\,\mathrm{d}\mathbf{r}=L\quad\quad\Longleftrightarrow\quad\quad\sum\limits_{i=1}^n\mathbf{v}(\mathbf{r}_i)(\mathbf{r}_{i}-\mathbf{r}_{i-1})\underset{\begin{matrix}n\to \infty\\\mathbf{r}_i\in \Gamma\\|\mathbf{r}_{i}-\mathbf{r}_{i-1}|\to 0\\\mathbf{r}_{i}=\mathbf{r}(t_i)\\(t_i)_{i=1...n}\mbox{ szig. mon. nov.} \end{matrix}}{\longrightarrow} L\in \mathbf{R}

Az integrál létezésére és értékére az alábbi egy egyszerű kritériumot és egydimenziós integrált írhatjuk föl. Legyen G:[t_1,t_2]\to D,\quad t\mapsto\mathbf{r}(t) legfeljebb véges sok pontban nem folytonosan differenciálható függvény. Ekkor az \mathbf{r}(t) deriváltja véges sok pont kivételével létezik, a vonalintegrál létezik és felírható

\int\limits_{G}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{t_1}^{t_2}\mathbf{v}(\mathbf{r}(t))\cdot \dot{\mathbf{r}}(t)\,\mathrm{d}t

Ha a skaláris szorzat invariáns értelmezését vesszük, akkor a fenti formulát még a következőképpen is felírhatjuk:

\int\limits_{G}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{t_1}^{t_2}v_{\parallel }(\mathbf{r}(t))\cdot|\dot{\mathbf{r}}(t)|\,\mathrm{d}t=\int\limits_{G}v_{\parallel }\,|\mathrm{d}\mathbf{r}|

ahol v_\parallel =\mathbf{v}\cdot \mathbf{t}, azaz a vektormezőnek a görbe érintője irányába eső előjeles vetülete.

Tétel -- Stokes-tétel -- Legyen \mathbf{v}:D\to \mathbf{R}^3 folytonosan differenciálható vektormező, D\subseteq \mathbf{R}^3 tartomány és legyen F\subseteq D irányított, peremes felület, ennek pereme \partial F. Ekkor

\oint\limits_{\partial F}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{F}\mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{F}

Megjegyezzük, hogy a perem irányítása kompatibilis kell hogy legyen a felület irányításával, ellenkező esetben az integrál a fenti ellentettje lesz. Kompatibilis a felület és a pereme irányítása, ha "a felületi normálvektor irány a fejünk iránya, a lábunk a felületen van, a peremen haladunk végig és a felület bal kéz felől esik (jobbkézszabály)".

Végtelen hosszú egyenes vezető keltette mágneses mező rotációja és cirkulációja

A tétel alkalmazására a következő hengerszimmetrikus esetet nézzük.

Legyen

\mathbf{v}=\frac{\mathbf{k}\times \mathbf{r}}{|\mathbf{k}\times\mathbf{r}|^2}

a vektormező és a felület az [xy] sík egy olyan tetszőleges T mérhető tartománya, mely a belsejében tartalmazza az origót és a pereme a G zárt görbe. Igazoljuk ekkor, hogy G-re az integrál 2π.

Először kiszámítjuk a vektormező rotációját. Ehhez felhasználjuk a rotációra vonatkozókövetkező azonosságot:

\mathbf{rot}\,(\Phi\mathbf{u})=\mathbf{rot}(\mathbf{u})\cdot \Phi+\mathrm{grad}\Phi\times\mathbf{u}
\mathbf{rot}\,\mathbf{v}=\mathbf{rot}(\mathbf{k}\times \mathbf{r})\cdot |\mathbf{k}\times\mathbf{r}|^{-2}+(\mathbf{k}\times \mathbf{r})\times\mathrm{grad}(|\mathbf{k}\times\mathbf{r}|^{-2})

A rotáció a deriválttenzor vektorinvariánsának kétszerese, mivel lineáris leképezés deriváltja saját maga, ezért a képletbeli rotáció 2k. A képletbeli gradiens alatti skalármező a tengelytől mért távolságtől függ, ezért:

\mathbf{rot}\,\mathbf{v}=2\mathbf{k}|\mathbf{k}\times\mathbf{r}|^{-2}+(\mathbf{k}\times \mathbf{r})\times(-2)|\mathbf{k}\times\mathbf{r}|^{-3}\cdot \frac{(\mathbf{k}\times \mathbf{r})\times\mathbf{k}}{|\mathbf{k}\times\mathbf{r}|}=\mathbf{0}

Most felbontjuk a T tartományt egy D lyukas tartományra és egy körlapra. A K körlap sugara legyen olyan R, mely esetén a körlap a T belsejében van benne. Ekkor

\int\limits_{\partial D}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial T}\mathbf{v}\,\mathrm{d}\mathbf{r}+\int\limits_{-\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}

Tehát

\int\limits_{\partial T}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial D}\mathbf{v}\,\mathrm{d}\mathbf{r}+\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{D}\mathbf{rot}(\mathbf{v})\,\mathrm{d}\mathbf{f}+\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}

Innen a vonalintegrál invariáns értelmezése folytán:

\int\limits_{\partial K}\mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{\partial K}\frac{1}{R}|\mathrm{d}\mathbf{r}|=\frac{1}{R}2\pi R=2\pi

(Itt lényegében a végtelen hosszú egyenes vezető körüli görbén a mágneses indukció körintegrálját határoztuk meg.)

CROSS és alkalmazása és a Green-tétel

Definíció. A kettő vagy háromdimenziós térben CROSS a következő lineáris ill. bilineáris leképezés:

Ha \mathbf{v}=(v_1,v_2)\in \mathbf{R}^2, akkor \mathsf{cross}(\mathbf{v})=(-v_2,v_1).

Ha \mathbf{v}, \mathbf{w}\in \mathbf{R}^3, akkor \mathsf{cross}(\mathbf{v},\mathbf{w})=\mathbf{v}\times\mathbf{w}.

Leképezések invariánsai

Az S lineáris leképezés szimmetrikus, ha minden ortonormált bázisban a mátrixa szimmetrikus mátrix. Igaz az, hogy S pontosan akkor szimmetrikus, ha minden u, v vektorra

u\cdot(Sv)=v\cdot(Su),

ahol \cdot a skaláris szorzás.

Az A lineáris leképezésantiszimmetrikus, ha minden ortonormált bázisban a mátrixa antiszimmetrikus mátrix. Igaz az, hogy A pontosan akkor antiszimmetrikus, ha minden u, v vektorra

u\cdot(Av)=-v\cdot(Au),

ahol \cdot a skaláris szorzás.

Bármely T lineáris leképezés egyértélműen előáll S + A alakban, ahol S szimmetrikus, A pedig antiszimmetrikus, éspedig:

\mathbf{T}=\frac{1}{2}(\mathbf{T}+\mathbf{T}^{\mathrm{T}})+\frac{1}{2}(\mathbf{T}-\mathbf{T}^{\mathrm{T}})

Két fontos tétel:

Tétel -- Ha AR3 (illetve R2 ) antiszimmetrikus, akkor létezik olyan a vektor (vagy a skalár), hogy minden v vektorra:

\mathbf{Av}=\mathbf{a}\times\mathbf{v}=\mathsf{cross}(\mathbf{a},\mathbf{v})\quad\quad(\mathrm{vagy}\;\mathbf{Av}=a\cdot\mathsf{cross}(\mathbf{v}))

a-t (ill. a-t) az A vektorinvariánsának nevezzük (bár a síkon ez skalár). A tételt elég a sztenderd bázisban igazolni, ott az a×( . ) opertátorral, azonos így A ez az operátor.

Főtengelyétel -- Ha SRn×n szimmetrikus, akkor minden sajátértéke valós és létezik a sajátvektorokból álló B ortonormált bázis, amiben S főtengelyre transzformálható, azaz diagonális és az elemei az S sajátértékei:

[\mathbf{S}]_{\{\mathbf{v}_1,...,\mathbf{v}_n\}}=\begin{pmatrix}\lambda_1& 0& 0\\
0& \ddots& 0\\
0 & 0& \lambda_n\end{pmatrix}

Ez nehéz, de fontos tétel.

A deriválttenzor invariánsai

Tudjuk, hogy ha v differenciálható vektorfüggvény, akkor az r0 pontbeli differenciálján, vagy deriváltján, vagy deriválttenzorán azt az egyértelműen létező A lineáris leképezést értjük, melyre:

\lim\limits_{\mathbf{r}\to \mathbf{r}_0}\frac{\mathbf{v}(\mathbf{r})-\mathbf{v}(\mathbf{r}_0)-\mathbf{A}(\mathbf{r}-\mathbf{r}_0)}{|\mathbf{r}-\mathbf{r}_0|}=\mathbf{0}

Minthogy az A deriválttenzor lineáris leképezés, ezért érdemes külön elnevezni az invariánsait (h tetszőleges vektora a térnek):

\mathbf{A}\mathbf{h}=\mathbf{A}_s\mathbf{h}+\left.\frac{1}{2}\mathbf{rot}(\mathbf{v})\right|_{\mathbf{r_0}}\times\mathbf{h}

azaz A vektorinvariánsának duplája a rotáció.As a derivált leképezés szimmetrikus része. A divergencia a skalárinvariáns:

\mathrm{div}(\mathbf{v})=\mathrm{Tr}(\mathbf{A})

Világos, hogy ebből úgy lesznek a parciális deriváltakkal definiált alakok, ha az A sztenderd bázisbeli mátrixát, azaz a J Jacobi mátrixot írjuk fel. Ekkor mindkét említett differenciáloperátort a szokásos alakjában kapjuk:

\mathrm{J}=\begin{pmatrix}\frac{\partial v_1}{\partial x}& \frac{\partial v_1}{\partial y}& \frac{\partial v_1}{\partial z}\\
\frac{\partial v_2}{\partial x}& \frac{\partial v_2}{\partial y}& \frac{\partial v_2}{\partial z}\\
\frac{\partial v_3}{\partial x}& \frac{\partial v_3}{\partial y}& \frac{\partial v_3}{\partial z}\end{pmatrix}

Integrálok kiszámítási formulái

Felszín szerinti intergálok:

Síkban: \int\limits_{F} \varphi|df|=\int\limits_{t=t_1}^{t_2} \varphi(r(t))|\mathsf{cross}(\dot{r}(t))|dt

Térben: \int\limits_{F} \varphi|df|=\int\limits_{(u,v)\in T} \varphi(r(u,v))|\mathsf{cross}(r_u(u,v),r_v(u,v))|dudv

Felületmenti intergálok:

Síkban: \int\limits_{F} vdf=\int\limits_{t=t_1}^{t_2} v(r(t))\mathsf{cross}(\dot{r}(t))dt

Térben: \int\limits_{F} vdf=\int\limits_{(u,v)\in T} v(r(u,v))\mathsf{cross}(r_u(u,v),r_v(u,v))dudv

Síkban a felületi és felszín integrál kifejezhető az ívhossz és a vonalintegrállal, a következőképpen. Mivel |\mathsf{cross}(a)|=|a|, ezért

\int\limits_{F} \varphi|df|=\int\limits_{t=t_1}^{t_2} \varphi(r(t))|\mathsf{cross}(\dot{r}(t))|dt=\int\limits_{t=t_1}^{t_2} \varphi(r(t))|\dot{r}(t))|dt=\int \limits_{L}\varphi|dr|,

ahol L és F paraméterezése t\mapsto r(t) ugyanaz.

Felületi integrál esetén, ha F egy T tartomány peremdarabja, akkor

\int\limits_{F} vdf=\int\limits_{-F}\mathsf{cross}(v)dr

ugyanis felhasználva, hogy cross(dx,dy)=(-dy,dx) és cross(v1,v2)=(-v2,v1)

\int\limits_{F} vdf=\int\limits_{F}v_1(-dy)+v_2dx=\int\limits_{F}v_2dx-v_1dy=\int\limits_{F}-(-v_2dx+v_1dy)=-\int\limits_{F}-v_2dx+v_1dy=
=\int\limits_{-F}-v_2dx+v_1dy=\int\limits_{-F}\mathsf{cross}(v)dr

Itt -F, mint vonal a T tartomány peremének egy darabja, amint pozitívan van irányítva (ha tudjuk, hogy F kifelé irányított)

Green-tétel

Legyen a (P,Q) síkbeli vektormező egy U nyílt halmazon folytonosan differenciálható és legyen T az U egy kompakt mérhető része, ∂T a peremét alkotó görbe. Ekkor

\oint\limits_{\partial T} Pdx+Qdy=\int\limits_{T}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dxdy

Ezt a tételt egy spéci T háromszöglapra bizonyítjuk. Legyen

T:=\{(x,y)\mid 0\leq x\leq 1,\quad 0\leq y\leq 1-x\}

Az így definiált T az x tengelyre vonatkozóan normáltartomány. A bizonyításban szükség lesz arra, hogy T-t y tengelyre vonatkozó normáltartományként is megadjuk:

T:=\{(x,y)\mid 0\leq y\leq 1,\quad 0\leq x\leq 1-y\}

Határa:

\partial T=[(0,0),(1,0)]\cup[(1,0),(0,1)]\cup[(0,1),(0,0)]

A vonaldarabok paraméterezése legyen rendre: (t,0), ha t∈[0,1], (t,1-t), ha t∈[0,1] (ennek az irányításét majd meg kell fordítani) és (0,t), t∈[0,1] (ennek is meg kell fordítani). Ekkor

\oint\limits_{\partial T} Pdx+Qdy=\int\limits_{0}^1P(t,0)dt-\int\limits_{0}^1 P(t,1-t)-Q(t,1-t)dt-\int\limits_{0}^1 Q(0,t)dt=
=\int\limits_{0}^1P(t,0)- P(t,1-t)dt+\int\limits_{0}^1 Q(1-t,t)-Q(0,t)dt=\int\limits_{0}^1P(x,0)- P(x,1-x) dx+\int\limits_{0}^1 Q(1-y,y)-Q(0,y)dy=

Itt végeztünk egy paramétercserét.

=\int\limits_{0}^1 Q(1-y,y)-Q(0,y)dy-\int\limits_{0}^1 P(x,1-x)-P(x,0)dx=\int\limits_{y=0}^1\int\limits_{x=0}^{1-y} \frac{\partial Q(x,y)}{\partial x}dxdy-\int\limits_{x=0}^1\int\limits_{y=0}^{1-x}\frac{\partial P(x,y)}{\partial y}dydx=

Ezután pedig felhasználjuk, hogy a két integrál ugyanarra a tartományra vett kettősintegrál:

\int\limits_{T}\frac{\partial Q}{\partial x}dxdy-\int\limits_{T}\frac{\partial P}{\partial y}dxdy=\int\limits_{T}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dxdy

A tétel érvényes minden n-szeresen összefüggő tartományra is (az n-1 db lyukat tartalmazó kilyukasztott körlappal homeomorf tartományokra), mert egyfelől változatlan marad, ha görbevonalú háromszögre térünk át (integráltranszformációval), másfelől minden n-szeresen összefüggő tartomány felbontható véges sok görbevonalú háromszögre, ahol az integrálok összegében a belső szakaszok eltűnnek és a tétel szintén érvényben marad.

A Green-tétel a (háromdimenziós) Stokes-tétel speciális esete, hiszen a (P,Q,0) vektormező rotációja pont (0,0,∂xQ-∂yP). A Green-tételből levezethető a kétdimenziós Gauss-tétel, a következőképpen. Legyen T a síkbeli peremes tartomány és ∂T a pereme mint pozitívan irányított zárt görbe (ill. véges sok görbe diszjunkt úniója, ha n-szeresen összefüggő, n>1). Ekkor a Q:=P, P:=-Q szereposztással felírva a Green-tételt:

\oint\limits_{\partial T} -Qdx+Pdy=\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy

Itt a baloldali integrandus a (P,Q) vektormező cross-ja, ami viszont a ∂T-re, mint valódi felületre vett integrál ellenkezője:

\int\limits_{T}\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}dxdy=\oint\limits_{\partial T} -Qdx+Pdy=\oint\limits_{\partial T} \mathsf{cross}(P,Q) dr=\oint\limits_{-\partial T} (P,Q) df

ahol persze ∂xP+∂yQ=div(P,Q) és a -∂T valódi felület a tartományból kifelé van irányítva.

Személyes eszközök