Haladó szintre hozó kurzus/1

A MathWikiből
(Változatok közti eltérés)
(Kijelentéslogika)
(Kijelentéslogika)
14. sor: 14. sor:
 
:c) <math>\neg (p\vee q)\quad \equiv\quad (\neg p)\wedge (\neg q),\qquad\neg(p\wedge q)\quad \equiv\quad (\neg p)\vee (\neg q)\qquad</math> (De-Morgan-szabályok)
 
:c) <math>\neg (p\vee q)\quad \equiv\quad (\neg p)\wedge (\neg q),\qquad\neg(p\wedge q)\quad \equiv\quad (\neg p)\vee (\neg q)\qquad</math> (De-Morgan-szabályok)
 
:d) <math>(p\vee q)\wedge r\quad \equiv\quad (p \wedge r) \vee (q\wedge r),\qquad(p\wedge q)\vee r\quad \equiv\quad (p \vee r) \wedge (q\vee r)</math> (disztributív szabályok)
 
:d) <math>(p\vee q)\wedge r\quad \equiv\quad (p \wedge r) \vee (q\wedge r),\qquad(p\wedge q)\vee r\quad \equiv\quad (p \vee r) \wedge (q\vee r)</math> (disztributív szabályok)
 +
 +
==Halmazok==
 +
 +
''3.''' Tudva hogy:
 +
:<math>A\cup B=_\mathrm{def}\{x\mid x\in A \vee x\in B\}</math>
 +
:<math>A\cap B=_\mathrm{def}\{x\mid x\in A \wedge x\in B\}</math>
 +
:<math>A\subseteq B\Leftrightarrow_\mathrm{def}\mbox{ minden }x\mbox{-re} x\in A \Rightarrow x\in B</math>
 +
  
  

A lap 2016. június 28., 20:24-kori változata

Ez az szócikk a Haladó szintre hozó szócikk alszócikke.

Kijelentéslogika

1. Igazoljuk igazságtáblázattal, hogy a következő kijelentések mindig igazak:

a) p\Rightarrow(p\vee q), q\Rightarrow(p\vee q) (a "vagy" alaptulajdonsága)
b) (p\wedge (\neg p))\Rightarrow q (a "hamisból" minden következik)
c) q\Rightarrow (p\vee (\neg p)) (az "igaz" mindenből következik)
d) [(p\Rightarrow r) \wedge (q\Rightarrow r)\wedge (p\vee q)]\Rightarrow r (az esetszétválasztás szabálya)

2. Igazoljuk igazságtáblázattal, hogy alább a ≡ két oldalán álló kifejezés mindig ugyanolyan igazságértékű!

a) \neg(p\Rightarrow q)\quad \equiv\quad [(\neg q)\Rightarrow (\neg p)]\qquad (a kontrapozíció szabálya)
b) (p\Rightarrow q)\quad \equiv\quad (\neg p)\vee q (a "ha-akkor" jellemzése "vagy"-gyal és "nem"-mel)
c) \neg (p\vee q)\quad \equiv\quad (\neg p)\wedge (\neg q),\qquad\neg(p\wedge q)\quad \equiv\quad (\neg p)\vee (\neg q)\qquad (De-Morgan-szabályok)
d) (p\vee q)\wedge r\quad \equiv\quad (p \wedge r) \vee (q\wedge r),\qquad(p\wedge q)\vee r\quad \equiv\quad (p \vee r) \wedge (q\vee r) (disztributív szabályok)

Halmazok

3.' Tudva hogy:

A\cup B=_\mathrm{def}\{x\mid x\in A \vee x\in B\}
A\cap B=_\mathrm{def}\{x\mid x\in A \wedge x\in B\}
A\subseteq B\Leftrightarrow_\mathrm{def}\mbox{ minden }x\mbox{-re} x\in A \Rightarrow x\in B



Haladó szintre hozó 2. téma
Személyes eszközök