Matematika A2a 2008/7. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Függvénykompozíció differenciálja)
 
(egy szerkesztő 16 közbeeső változata nincs mutatva)
1. sor: 1. sor:
 
:''Ez az szócikk a [[Matematika A2a 2008]] alszócikke.''
 
:''Ez az szócikk a [[Matematika A2a 2008]] alszócikke.''
 +
 +
'''1.'''
 +
:<math>f(x,y)=xy\sin(x^2y)\,</math>
 +
:''T'' = [0,1]&times;[0,&pi;/2]
 +
 +
'''2.'''
 +
:<math>f(x,y)=2xy^2e^{x^2y}\,</math>
 +
:''T'' = [0,1]&times;[0,1]
 +
'''3.'''
 +
:<math>f(x,y)=x^7+\dfrac{\mathrm{arctg}(y)}{1+y^2}\,</math>
 +
:''T'' = [0,1]&times;[0,1]
 +
 +
'''4.'''
 +
:T = [-1,1] &times; [0,&pi;/4]
 +
:<math>f(x,y)=\sin(x^3)\frac{1}{\cos^2 y}</math>
 +
 +
'''5.'''
 +
:T = [-1,1] &times; [e,<math>e^2</math>]
 +
:<math>f(x,y)=\sin(x^3)\frac{\sin^{2017}(\mathrm{sh}(y))}{\mathrm{ln}\,y}</math>
 +
 +
'''6.'''
 +
:T = [a,b] &times; [c,d]
 +
:<math>f(x,y)=g(x)h(y)</math>
 +
''téglalapon''  szeparálható integrandus integrálja szorzattá esik szét:
 +
 +
:<math>\int\limits_{x=0}^b\int\limits_{y=c}^{d}g(x)h(y)\,\mathrm{d}x\,\mathrm{d}y=\int\limits_{x=a}^b g(x)\left(\int\limits_{y=c}^{d} h(y)\,\mathrm{d}y\right)\,\mathrm{d}x=\left(\int\limits_{x=a}^b g(x)\,\mathrm{d}x\right)\cdot\left(\int\limits_{y=c}^{d} h(y)\,\mathrm{d}y\right)</math>
 +
 +
'''7.'''
 +
:T = [1,e] &times; [1,2]
 +
:<math>f(x,y)=\frac{\mathrm{ln}^9\,x}{xy}</math>
 +
 +
'''8.'''
 +
:<math>T=\{(x,y)\mid 0\leq x\leq 1\;\wedge\;0\leq y\leq x^2\}</math>
 +
:<math>f(x,y)=x^3\cos(xy)\,</math>
 +
 +
 +
'''9.'''
 +
:<math>\int\limits_{y=0}^\pi\int\limits_{0}^{\cos y}x\sin y\;dxdy</math>
 +
 +
'''10.'''
 +
:<math>\int\limits_{\sqrt{\pi}}^{\sqrt{2\pi}}\int\limits_{0}^{x^3}\sin \frac{y}{x}\;dydx</math>
 +
 +
'''11.'''
 +
:<math>\int\limits_{0}^{1}\int\limits_{y}^{1}e^{x^2}\;dxdy</math>
 +
 +
'''12.'''
 +
:<math>\int\limits_{1}^{4}\int\limits_{\sqrt{y}}^{2}\sin\left(\frac{x^3}{3}-x\right)\;dxdy</math>
 +
 +
'''13.'''
 +
:<math>\int\limits_{0}^{2}\int\limits_{1+y^2}^{5}y\cdot e^{(x-1)^2}\;dxdy</math>
 +
 +
'''14.'''
 +
:<math>\iint\limits_{T_{x,y}} xy^7\;dxdy</math>
 +
:<math>T_{x,y}=\{(x,y)\mid x^2+y^2\leq 1,\quad x\geq 0, \quad y\geq 0\}</math>
 +
 +
 +
'''15.'''
 +
:<math>\iiint\limits_{T_{x,y,z}} \sqrt{x^2+y^2}\cdot xy^2 z^2\;dxdydz</math>
 +
:<math>T_{x,y,z}=\{(x,y)\mid x^2+y^2\leq 4,\quad x\geq 0, \quad 0\leq z\leq 3\}</math>
 +
 +
 +
 +
<!--Comment
  
 
==Skalárfüggvények szorzata==
 
==Skalárfüggvények szorzata==
159. sor: 222. sor:
 
* <math>f_n(x,y)=\frac{x^ny}{x^2+y^2}\quad f_n(0,0)=0</math> függvényosztály folytonossága parciális és totális deifferenciálhatósága, folytonos parciális és totális differenciálhatósága
 
* <math>f_n(x,y)=\frac{x^ny}{x^2+y^2}\quad f_n(0,0)=0</math> függvényosztály folytonossága parciális és totális deifferenciálhatósága, folytonos parciális és totális differenciálhatósága
  
==Implicit függvény deriváltja==
+
-->
 
+
'''Implicit''' megadású '''függvény'''ről akkor beszélünk, amikor egy függvény megadása nem (az explicit módon) ''y'' = ''f''(''x'') alakban történik, hanem az x és y kapcsolatát egy mindkét változót tartalmazó
+
:<math>F(x,y) = 0 \,</math>
+
egyenlet írja le.
+
Például adjunk meg olyan függvényt, melynek grafikonja valamely kör egy szakasza. Az
+
:<math>x^2+y^2=1\,</math>
+
egyenletű körből könnyű az ''y'' változót kifejezni, az <math>\mbox{ }_{y=\sqrt{1-x^2}}</math> és <math>\mbox{ }_{y=-\sqrt{1-x^2}}</math> alakokat kapjuk. Bonyolultabb esetekben, például a
+
:<math>\sin y =x\,</math>
+
esetén semmi reményünk, hogy az ''y'' változóra valamilyen egyenletrendezéssel általános képletet kapjunk. Az ilyen példák miatt nevezik ezeket a típusú függvényeket ''implicit'', avagy régi, választékos kifejezéssel élve ''bennrekedt'' függvényeknek. A differenciálszámítás szempontjából megelégedhetünk azzal, ha az implicit függvény deriváltját ki tudjuk számolni. Sok esetben ebből már következtethetünk a függvényre vagy annak viselkedésére is.
+
 
+
A modern analízis szemszögéből egy N &times; M <math>\rightarrow</math> K normált terek között ható ''F'' függvény ''a'' &isin; ''N'' és ''b'' &isin; ''M'' pontokhoz tartozó implicit függvényén olyan, az ''a'' egy ''U'' környezetén értelmezett és a ''b'' egy ''V'' környezetébe képező ''f'':''U'' <math>\rightarrow </math> ''V'' függvényt értünk, melyre f(a)=b és minden ''x'' &isin; ''U'' pont esetén rendelkezik az
+
:<math>F(x,f(x))=0\,</math>
+
tulajdonsággal. Amelyet szavakban úgy fogalmazhatunk meg, hogy az F(x,y)=0 egyenletből az ''y'' változó kifejezhető y=f(x) alakban.
+
 
+
Most szorítkozzunk csak a kétváltozós esetre és tegyük fel, hogy létezik differenciálható implicit függvénye a differenciálható F függvénynek. Ekkor az F(x,y) függvény implicit függvénye az f(x), ha egy adott (u,v) pontban:
+
:F(u,v)=0 és
+
:minden az f értelmezési tartományába eső x-re F(x,f(x))&equiv;0 és
+
:f(u)=v,
+
akkor világos, hogy ha
+
:0 &equiv; &phi;(x) = F(x,f(x)) = (F<math>\circ</math>(id,f))(x) ,
+
akkor
+
:&phi;'(x) &equiv; 0
+
így tehát a függvénykompozíció deriválásának szabálya szerint:
+
:<math>\varphi'(u)=[\partial_1F(u,v),\partial_2F(u,v)]\cdot \begin{bmatrix}1\\f'(u)\end{bmatrix}=\partial_1 F(u,v)+\partial_2F(u,v)\cdot f'(u)\,=0</math>
+
így
+
:<math>f'(u)=-\frac{\partial_1 F(u,v)}{\partial_2 F(u,v)} \,</math>
+
 
+
==Implicitfüggvény tétel==
+
 
+
 
+
'''Tétel''' – ''Implicitfüggvény-tétel '''R'''-beli implicit függvényre'' – Legyen ''F'' az '''R'''<sup>2</sup> egy részhalmazán értelmezett, '''R'''-be képező differenciálható függvény, mely az értelmezési tartománya egy ''(a,b)'' belső pontjában folytonosan  differenciálható, F(a,b) = 0 és
+
:<math>\partial_2 F(a,b)\neq 0</math>
+
(azaz (a,b)-ben az ''y'' szerinti [[parciális derivált]]ja nem nulla).
+
Ekkor van a-nak olyan <math>I</math> és b-nek olyan <math>J</math> környezete, hogy F-nek egyértelműen létezik az (a,b) párhoz tartozó f: <math>I</math> <math>\rightarrow</math> <math>J</math> implicit függvénye, mely erősen differenciálható a-ban és deriváltja:
+
:<math>f'(a)=-\frac{\partial_1 F(a,b)}{\partial_2 F(a,b)}</math>
+
 
+
''Vázlatos bizonyítás.'' I. Először megkonstruáljuk az y=y(x) függvényt. Létezik olyan I &times; J &sube; Dom(F) az (a,b) körül, hogy &part;<sub>2</sub>F sehol sem nulla, azonos előjelű -- sőt feltehetjük, hogy pozitív. Ez amiatt van, hogy &part;<sub>2</sub>F(a,b) &ne; 0 és &part;<sub>2</sub>F folytonos.
+
 
+
Az y=y(x) implicit függvény létezése egyenértékű azzal, hogy
+
:minden ''x'' &isin; <math>I</math>-re az F( x , . ) parciális függvénynek zérushelye van J-ben,
+
hiszen ekkor minden x-hez létezik olyan ''y'' &isin; J, hogy F(x,y)=0. Belátjuk, hogy minden ilyen x-hez ''egyetlen'' zérushelye van F( x , . )-nek.
+
 
+
Tekintsük a folytonos F( a , . ) parciális függvényt. A pozitívra választott y-szerinti deriváltból következik, hogy ez <math>I</math>-n szigorúan monoton növekvő. Mivel b-ben zérushelye van ( F(a,b)=0 ), ezért van olyan <math>y_2</math> > b pont, hogy ott F( a , . ) pozitív és <math>y_1</math> < b pont, hogy ott F( a , . ) negatív. Ekkor F folytonossága miatt van az (a,<math>y_1</math>) pontnak olyan környezete, ahol F negatív és
+
van az (a,<math>y_2</math>) pontnak olyan környezete, ahol F pozitív. Most definiáljuk át <math>I</math>-t és J-t úgy, hogy <math>I</math> &times; J-n az F egy J-beli elem fölött mindenhol pozitív, egy J-beli elem alatt mindehol negatív értéket vegyen föl.
+
 
+
A  praciális deriváltak folytonosságából az is következik, hogy minden x &isin; <math>I</math>-re az F( x , . ) függvény is szigorúan monoton növekvő, negatív és pozitív értéket is felvevő folytonos függvény, így a [[Bolzano-tétel]] alapján létezik <math>y_x</math> zérushelye és mindegyiknek egyetlen zérushelye létezik.
+
 
+
II. Állítjuk, hogy a &phi;:<math>I</math> <math>\rightarrow</math> J, x <math>\mapsto</math> <math>y_x</math> függvény implicit függvénye F-nek, azaz minden x &isin; <math>I</math>-re F(x,&phi;(x))=0.
+
 
+
Könnyen belátható, hogy &phi; folytonos a-ban, hiszen ha a-hoz közeledve mindig találnánk olyan x pontot, hogy &phi;(x) egy adott &epsilon;-nál mindig jobban eltér b-től, akkor &phi;(x) egy olyan környezetbe esne bele, ahol F mindenhol egy pozitív számnál nagyobb vagy mindenhol egy negatív számnál kisebb. Ám, F(x,&phi;(x))=0, így ez ellentmondana 
+
F folytonos tulajdonságának.
+
 
+
III. Végül az implicit függvény differenciálható a-ban, mert ha van (a,b)-ben érintősík, akkor az az érintőegyenesben metszi az [x,y] síkot.
+
 
+
 
+
=== Példák===
+
 
+
Tekintsük a következő egyenletű síkgörbét:
+
:<math>x^5+xy+y^5=3\,</math>
+
Nem lenne könnyű feladat kifejezni belőle y-t, mert az ötödfokú egyenletnek nincs általános megoldóképlete. Mivel a baloldal akárhányszor differenciálható, ezért joggal feltételezhetjük, hogy bizonyos pontokban létezik implicit függvénye. Tegyük fel, hogy &phi; ilyen függvény. Ekkor az egyenlet
+
:<math>x^5+x\varphi(x)+(\varphi(x))^5=3</math>
+
alakú, melynek minden olyan x-nél, ahol &phi; differenciálható:
+
:<math>5x^4+\varphi(x)+x\varphi'(x)+5\varphi^4(x)\cdot\varphi'(x)=0</math>
+
ahonnan a derivált:
+
<math>\varphi'(x)=-\frac{5x^4+\varphi(x)}{5\varphi^4(x)+x}</math> vagy szimbolikusan: <math>y'=-\frac{5x^4+y}{5y^4+x}</math>.
+
Alaposabb vizsgálatokkal kideríthető, hogy ez a derivált minden pontban létezik és negatív, így az implicit függvény mindenhol létezik és szigorúan monoton csökkenő. Vegyük észre, hogy a nevezőben lévő kifejezés pont &part;<sub>y</sub>F(x,y) és az implicit függvény létezésének feltétele pont a nevező nullától különböző volta.
+
 
+
==Többváltozós eset==
+
 
+
Ebben az esetben is az „érintősík” végtelenül közelítő tulajdonsága játszik majd fontos szerepet. Jól látható az összefüggés, ha feltesszük, hogy ''F'' egy '''R'''<sup>n</sup>&times;'''R'''<sup>m</sup>-en értelmezett affin függvény, azaz egy lineáris leképezés eltoltja. Ekkor
+
:''F(x,y) = F(a+h,b+k) = F(a,b)+dF<sub>1</sub>(a,b)h+dF<sub>2</sub>(a,b)k''.
+
Amennyiben ''y = y(x)'' olyan, hogy ''y(a) = b'' és ''F(x,y(x)) = 0'', akkor fennáll a ''0 = dF<sub>1</sub>(a,b)h + dF<sub>2</sub>(a,b)k'' 
+
egyenlőség és ''k'' kifejezhető, amennyiben az ''A = dF<sub>2</sub>(a,b)'' mátrix invertálható. A ''B = dF<sub>1</sub>(a,b)'' jelöléssel ekkor
+
:''k = -(A<sup>-1</sup><math>\cdot</math>B) h''.
+
Általános esetben ez csak egy másodrendűen kicsiny tag hozzávételével lesz igaz, de az implicit függvény létezésének belátásához szükséges a fenti gondolatmenet is.
+
+
[[Banach-tér|Banach-terek]] esetén (melyek akár végtelen [[dimenzió]]sak is lehetnek) a tétel a következő.
+
 
+
'''Tétel''' – ''Implicitfüggvény-tétel Banach-terekre'' – Legyen E, H, G Banach-terek, F:E &times; H <math>\rightarrow</math> G olyan függvény, mely (a,b) &isin; E &times; H-ban erősen differenciálható. Ha a &part;<sub>2</sub>F(a,b) lineáris leképezés injektív és az inverzével együtt folytonos, akkor egyértelműen létezik az F-nek egy az (a,b) párhoz tartozó f lokális  implicit függvénye, ez erősen differenciálható a-ban és differenciálja:
+
: <math>df(a)=-(\partial_2 F(a,b))^{-1}\circ(\partial_1 F(a,b))</math>
+
 
+
Vagy egy kevésbé absztrakt tétel:
+
 
+
'''Tétel''' – ''Implicitfüggvény-tétel '''R'''<sup>n</sup>-re'' – Legyen F:'''R'''<sup>n</sup>&times;'''R'''<sup>m</sup><math>\rightarrow</math>'''R'''<sup>m</sup> folytonosan differenciálható függvény, (a,b) &isin; '''R'''<sup>n</sup>&times;'''R'''<sup>m</sup>olyanok, hogy F(a,b)=0 és <math>\mbox{ }_{\det\left(\frac{\partial F_i(a,b)}{\partial y_k}\right)_{i,k=1,...,m}\ne 0}</math>. Ekkor egyértelműen létezik F-nek egy az (a,b)-hez tartozó lokális implicit függvénye.
+
 
+
  
  

A lap jelenlegi, 2017. március 20., 12:58-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

1.

f(x,y)=xy\sin(x^2y)\,
T = [0,1]×[0,π/2]

2.

f(x,y)=2xy^2e^{x^2y}\,
T = [0,1]×[0,1]

3.

f(x,y)=x^7+\dfrac{\mathrm{arctg}(y)}{1+y^2}\,
T = [0,1]×[0,1]

4.

T = [-1,1] × [0,π/4]
f(x,y)=\sin(x^3)\frac{1}{\cos^2 y}

5.

T = [-1,1] × [e,e2]
f(x,y)=\sin(x^3)\frac{\sin^{2017}(\mathrm{sh}(y))}{\mathrm{ln}\,y}

6.

T = [a,b] × [c,d]
f(x,y) = g(x)h(y)

téglalapon szeparálható integrandus integrálja szorzattá esik szét:

\int\limits_{x=0}^b\int\limits_{y=c}^{d}g(x)h(y)\,\mathrm{d}x\,\mathrm{d}y=\int\limits_{x=a}^b g(x)\left(\int\limits_{y=c}^{d} h(y)\,\mathrm{d}y\right)\,\mathrm{d}x=\left(\int\limits_{x=a}^b g(x)\,\mathrm{d}x\right)\cdot\left(\int\limits_{y=c}^{d} h(y)\,\mathrm{d}y\right)

7.

T = [1,e] × [1,2]
f(x,y)=\frac{\mathrm{ln}^9\,x}{xy}

8.

T=\{(x,y)\mid 0\leq x\leq 1\;\wedge\;0\leq y\leq x^2\}
f(x,y)=x^3\cos(xy)\,


9.

\int\limits_{y=0}^\pi\int\limits_{0}^{\cos y}x\sin y\;dxdy

10.

\int\limits_{\sqrt{\pi}}^{\sqrt{2\pi}}\int\limits_{0}^{x^3}\sin \frac{y}{x}\;dydx

11.

\int\limits_{0}^{1}\int\limits_{y}^{1}e^{x^2}\;dxdy

12.

\int\limits_{1}^{4}\int\limits_{\sqrt{y}}^{2}\sin\left(\frac{x^3}{3}-x\right)\;dxdy

13.

\int\limits_{0}^{2}\int\limits_{1+y^2}^{5}y\cdot e^{(x-1)^2}\;dxdy

14.

\iint\limits_{T_{x,y}} xy^7\;dxdy
T_{x,y}=\{(x,y)\mid x^2+y^2\leq 1,\quad x\geq 0, \quad y\geq 0\}


15.

\iiint\limits_{T_{x,y,z}} \sqrt{x^2+y^2}\cdot xy^2 z^2\;dxdydz
T_{x,y,z}=\{(x,y)\mid x^2+y^2\leq 4,\quad x\geq 0, \quad 0\leq z\leq 3\}



6. gyakorlat 8. gyakorlat
Személyes eszközök