Matematika A2a 2008/7. gyakorlat

A MathWikiből
(Változatok közti eltérés)
a (=Megoldás)
(További példa skalárfüggvényre)
41. sor: 41. sor:
 
(ahol '''i''' az ''x'' irányú egységvektor, |.| a vektor hossza) függvény szintvonalait, differenciálhatóságát, gradiensét!
 
(ahol '''i''' az ''x'' irányú egységvektor, |.| a vektor hossza) függvény szintvonalait, differenciálhatóságát, gradiensét!
 
===Megoldás===
 
===Megoldás===
 +
Érdemes koordinátás írásmódra áttérni, hiszen az '''i''' vektor úgy is a koordinátarendszerhez kapcsolódik. A vektoriális szorzás definíciója miatt
 +
:<math>\Phi(x,y,z)=\Phi(\mathbf{r})=|\mathbf{r}|\cdot\sin(\mathbf{i},\mathbf{r})_\angle=\sqrt{y^2+z^2}</math>
 +
Tehát azok a pontok vannak azonos szintfelületen, melyeknek az [yz] síkra vett vetületük azonos hosszúságú ('''i''' &times; '''r''' hossza az '''i'''-re merőleges komponense '''r'''-nek). Az
 +
:<math>y^2+z^2=0</math>
 +
egyenlettel megadott pontokban (másként: ''y'' = 0 & ''z'' = 0 & ''x'' tetszőleges) a függvény nem differenciálható, ugyanis a &Phi;=0 szintfelület elfajúlt módon csak egy egyenes, az ''x'' tengely, így a gradiens vektor iránya nem egyértelmű. Ezt azzal is igazolhatjuk, ha vesszük ezekben a pontokban például az ''y'' irányú parciális függvényt:
 +
:<math>\Phi(x_0,0+t,0)=\sqrt{t^2}=|t|</math>
 +
azaz az (<math>x_0</math>,0,0) pontokhoz tartozó &Phi;(<math>x_0</math>, . ,0) parciális függvény nem differenciálható a 0-ban.
  
 +
Máshol a gradiensvektor, a parciális deriváltakat kiszámítva
 +
:<math>\mathrm{grad}\,\Phi(x,y,z)=\left(0,\frac{y}{\sqrt{y^2+z^2}}, \frac{z}{\sqrt{y^2+z^2}}\right)</math>
 +
vagy másként:
 +
:<math>\mathrm{grad}\,\Phi(\mathbf{r})=\frac{\mathbf{i}\times \mathbf{r}}{|\mathbf{i}\times \mathbf{r}|}\times \mathbf{i}</math>
  
 
+
 
<center>
 
<center>
 
{| class="wikitable" style="text-align:center"
 
{| class="wikitable" style="text-align:center"

A lap 2008. április 5., 08:27-kori változata

Ez az szócikk a Matematika A2a 2008 alszócikke.

Tartalomjegyzék

a × ... operátor

Differenciálható-e és ha igen mi a differenciálja, divergenciája, rotációja a

\mathbf{v}:\mathbf{R}^3\to\mathbf{R}^3;\quad \mathbf{v}(\mathbf{r})=\mathbf{a}\times\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Az a × ..., azaz az

\mathbf{a}\times\mathrm{I}\,

(itt I az identitás leképezés) leképezés lineáris, minthogy a vektoriális szorzás mindkét változójában lineáris (vLin(R3;R3)), így differenciálható és differenciálja saját maga:

\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r})=\mathbf{a}\times\mathrm{I}

azaz

(\mathrm{d}(\mathbf{a}\times\mathrm{I})(\mathbf{r}))\mathbf{h}=\mathbf{a}\times\mathbf{h}

minden h és rR3 vektorra.

Jacobi-mátrixa (a sztenderd bázisbeli mátrixa) tetszőleges (x,y,z) pontban:

\mathrm{J}^{\mathbf{a}\times\mathrm{I}}(x,y,z)=
\begin{bmatrix}
\;\,0 & -a_3& \;\;\,a_2\\
\;\;\,a_3 & \;\,0 & -a_1\\
-a_2 & \;\;\,a_1& \;\,0\\
\end{bmatrix}

Mivel a főátlóbeli elemek mind nullák, ezért ebből rögtön következik, hogy div(a × I)(r) = 0.

[\mathrm{rot}\,\mathbf{v}]_i=\varepsilon_{ijk}\partial_j\varepsilon_{klm}a_lx_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\partial_j x_m=\varepsilon_{ijk}\varepsilon_{klm}a_l\delta_{jm}=\varepsilon_{ijk}\varepsilon_{klj}a_l=
=\delta_{kk}\delta_{il}a_l-\delta_{ki}\delta_{lk}a_l=3a_i-a_i=2a_i\,

azaz rot v (r) = 2a. Az előbb felhasználtuk a kettős vektoriális szorzatra vonatkozó kifejtési tétel indexes alakját, a

\varepsilon_{ijk}\varepsilon_{klm}=\delta_{jm}\delta_{li}-\delta_{jl}\delta_{im}\,

ami azt mondja, hogy ha az ijk és klm-ben a nem azonos párok jó sorrendben következnek, akkor az epszolon 1-et, ha rossz sorrendben, akkor -1-et ad.

a \cdot ... operátor

Differenciálható-e és ha igen mi a differenciálja

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=\mathbf{a}\cdot\mathbf{r}

leképezésnek, ahol a előre megadott konstans vektor.

Megoldás

Skalártér lévén Φ gradiensét kell kiszámolnunk. Mivel ez is lineáris leképezés, ezért differenciálható és differenciálja saját maga, azaz a gradiens vektor pont a:

\mathrm{grad}\,(\mathbf{a}\cdot\mathbf{r})=\mathbf{a}

Ezt persze indexes deriválással is kiszámítható:

[\mathrm{grad}\,\Phi]_i=\partial_ia_kx_k=a_k\partial_ix_k=a_k\delta_{ik}=a_i\,

További példa skalárfüggvényre

Hatérozzuk meg a Φ

\Phi:\mathbf{R}^3\to\mathbf{R};\quad \Phi(\mathbf{r})=|\mathbf{i}\times\mathbf{r}|

(ahol i az x irányú egységvektor, |.| a vektor hossza) függvény szintvonalait, differenciálhatóságát, gradiensét!

Megoldás

Érdemes koordinátás írásmódra áttérni, hiszen az i vektor úgy is a koordinátarendszerhez kapcsolódik. A vektoriális szorzás definíciója miatt

\Phi(x,y,z)=\Phi(\mathbf{r})=|\mathbf{r}|\cdot\sin(\mathbf{i},\mathbf{r})_\angle=\sqrt{y^2+z^2}

Tehát azok a pontok vannak azonos szintfelületen, melyeknek az [yz] síkra vett vetületük azonos hosszúságú (i × r hossza az i-re merőleges komponense r-nek). Az

y2 + z2 = 0

egyenlettel megadott pontokban (másként: y = 0 & z = 0 & x tetszőleges) a függvény nem differenciálható, ugyanis a Φ=0 szintfelület elfajúlt módon csak egy egyenes, az x tengely, így a gradiens vektor iránya nem egyértelmű. Ezt azzal is igazolhatjuk, ha vesszük ezekben a pontokban például az y irányú parciális függvényt:

\Phi(x_0,0+t,0)=\sqrt{t^2}=|t|

azaz az (x0,0,0) pontokhoz tartozó Φ(x0, . ,0) parciális függvény nem differenciálható a 0-ban.

Máshol a gradiensvektor, a parciális deriváltakat kiszámítva

\mathrm{grad}\,\Phi(x,y,z)=\left(0,\frac{y}{\sqrt{y^2+z^2}}, \frac{z}{\sqrt{y^2+z^2}}\right)

vagy másként:

\mathrm{grad}\,\Phi(\mathbf{r})=\frac{\mathbf{i}\times \mathbf{r}}{|\mathbf{i}\times \mathbf{r}|}\times \mathbf{i}


6. gyakorlat 8. gyakorlat
Személyes eszközök