Matematika A3a 2008/7. gyakorlat

A MathWikiből
(Változatok közti eltérés)
(Cirkulációmentesség)
 
(egy szerkesztő 4 közbeeső változata nincs mutatva)
1. sor: 1. sor:
''<sub><[[Matematika A3a 2008]]</sub>''  
+
''<sub><[[Matematika A3a 2008]]</sub>''
  
==Komplex integrál==
+
==Folytonosság==
  
===Görbék a komplex síkon===
+
Azt mondjuk, hogy az ''A'' &sube; '''C''' halmazon értelmezett ''f'' függvény folytonos a ''z'' &isin; '''A''' pontban, ha ''z''-ben ''f'' folytonos mint '''R'''<sup>2</sup> &supe; ''A'' <math>\to</math> '''R'''<sup>2</sup> függvény. Maga az ''f'' ''folytonos'', ha az értelmezési tartománya minden pontjában folytonos.
  
Ha a &Gamma; '''C'''-beli halmaz olyan, hogy van olyan ''G'':[''a'',''b'']<math>\to</math>'''C''', ''t''<math>\mapsto</math>''z''(''t'') folytonos, veges sok kivetellel folytonosan differenciálható fuggveny, aminek az ertekkeszlete &Gamma;, akkor &Gamma;-t görbének nevezzük. A &Gamma; görbe ''egyszerű'', ha nem metszi át saját magát, azaz minden <math>t_1</math>, <math>t_2</math>-re, ha <math>z(t_1)=z(t_2)</math>, akkor <math>t_1=t_2</math>. ''G'' zárt, ha <math>z(a)=z(b)</math>. A görbe ''t''-beli irányvektorán a
+
A többváltozós valós analízisből ismert tény miatt fennáll:
:<math>\dot{z}(t)=\dot{x}(t)+\mathrm{i}\dot{y}(t)</math>
+
komplex számot értjük.
+
  
Tobb parameterezes is elo tudja allitani a &Gamma; gorbet. Ezek kozul kettot, a <math>z_1</math>-et es a <math>z_2</math>-t ekvivalensnek nevezunk, ha van olyan g:[a,b]<math>\to</math>[c,d] folytonos valos fuggveny, ami (a,b)-n differencialhato, g'>0 es <math>z_2=z_1\circ g</math>. Az osszes parameterezesek halmaza ket osztalyra esik szet, ezek a gorbe ellentetes parameterezeseit adjak.
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha ''f''-et a következő alakban írjuk:
 +
:<math>f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)</math>
 +
ahol ''u'' és ''v'' valós értékű függvények (rendre Re(''f'') és Im(''f'')), továbbá ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub> &isin; Dom(''f''), akkor a következők ekvivalensek:
 +
# ''f'' folytonos a ''z''<sub>0</sub>-ban
 +
# ''u'' és ''v'' függvények folytonosak az (''x''<sub>0</sub>,''y''<sub>0</sub>)-ban
  
====Példák====
+
==Határérték==
'''1.''' Legyen ''t''&isin;[a,b]-re ''z''(''t'') = ''x''(''t'') + i''y''(''t'') olyan, hogy <math>x(t)=x_0+w_1t</math> és <math>y(t)=y_0+w_2t</math>, azaz <math>z(t)=z_0+w t</math>. Ekkor ''z''(''t'') egy egyenes szakasz.
+
Komplex függvény '''C'''-beli pontban vett '''C'''-beli határértéke ugyanúgy értelmezett, mint az '''R'''<sup>2</sup> esetben. Itt is érvényes, hogy pontosan akkor látezik a határérték, ha a komponensfüggvényeknek létezik a határértéke és ekkor a határérték egyenlő lesz a valós és képzetes komponens határértékéből alkotott komplex számmal.
  
És ekkor:
+
A &infin; miatt érdemes külön is megfogalmazni a határérték definícióját, bár az teljesen analóg a valós esettel. Legyen ''f'' egy az ''A'' &sube; '''C''' halmazon értelmezett, '''C'''-be képező függvény. Legyen <math>\scriptstyle{u\in \overline{\mathbf{C}}}</math> az ''A'' torlódási pontja, azaz minden ''r'' > 0 esetén legyen olyan ''a'' &isin; ''A'', hogy ''a'' &isin; B<sub>r</sub>(''u'')\{u}. Azt mondjuk, hogy az ''f''-nek a <math>\scriptstyle{v\in \overline{\mathbf{C}}}</math> elem határértéke az ''u''-ban, ha
:<math>\dot{z}(t)=w</math>
+
:minden &epsilon; > 0 esetén létezik olyan &delta; > 0, hogy minden ''z'' &isin; ''A'' &cap; B<sub>&delta;</sub>(''u'')\{u}-re ''f''(''z'') &isin; B<sub>&epsilon;</sub>(''v'')
'''2.''' Az origó középpontú R sugarú kör:
+
:<math>z(t)=Re^{\mathrm{i}t}</math> ''t''&isin;[0,2&pi;]
+
És ekkor
+
:<math>\dot{z}(t)=R\mathrm{i}e^{\mathrm{i}t}</math>
+
hiszen
+
:<math>\dot{z}(t)=R\dot{\cos(t)+\mathrm{i}\sin(t)}=-R\sin(t)+\mathrm{i}R\cos(t)=\mathrm{i}(R\mathrm{i}\sin(t)+R\cos(t))</math>
+
  
===Komplex vonalmenti integrál===
+
ahol természetesen a &infin; környezetei a már említett módon értendők. 
'''Definíció.''' Ha ''G'':[a,b]<math>\to</math>'''C''' görbe és f olyan komplex függvény, melyre Ran(G)&sube;Dom(f), és f folytonos, akkor belátható, hogy létezik a
+
  
:<math>\begin{matrix}
 
\sum\limits_{i=1}^nf(\zeta_i)\cdot \Delta z_i & \longrightarrow & \int\limits_{G}f(z)\,\mathrm{d}z\\
 
& n\to \infty & \\
 
& \forall z_i\in G, \;\forall \zeta_i\in \Delta z_i &\\
 
& |\Delta z_i|\to 0 & 
 
\end{matrix}</math>
 
határérték, mely egy speciális Riemann-közelítőösszeg határértéke. Itt a görbén kijelöltük a véges sok <math>z_i</math> pontot, melyek a szigorúan monoton (<math>t_i</math>)-khez tartoznak a <math>z_i=z(t_i)</math> definícióval. Ezen <math>[z(t_i),z(t_{i+1})]</math> görbeszakaszokon belül felvettük tetszőlegesen a &zeta;<sub>i</sub> közbülső pontokat, és a &Delta;z<sub>i</sub>=<math>[z(t_i),z(t_{i+1})]</math> szakaszokkal elkészítettük az f(&zeta;<sub>i</sub>)&Delta;z<sub>i</sub> komplex szorzatokat. A határérték ezek görbére vett összegének határértéke. Ez a határérték az f függvény ''G''-re vett komplex integrálja.
 
  
 +
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a <math>z=x+iy</math> pontban a lim<sub>x</sub> u + i lim<sub>y</sub> v szám adja. Ekkor
  
'''Kiszámítási formula.''' Belátható, hogy a fenti integrál a következőkkel egyenlő:
 
:<math>
 
\int\limits_{G}f(z)\mathrm{d}z=\int\limits_{a}^b f(z(t))\cdot \dot{z}(t)\,\mathrm{d}t</math>
 
  
'''Megjegyzes''' A helyettesiteses integralas tetelenek felhasznalasaval belathato, hogy ez az integral fuggetlen a parametertezestol, ha azok ugyanazt az iranyitast hatarozzak meg.
+
'''Állítás.''' Az ''f'' komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
 +
: <math>\lim\limits_{z\to z_0} f(z)=f(z_0)</math>
 +
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció '''R'''<sup>2</sup>-ben lineáris legyen, hiszen ''a véges dimenziós normált terek között ható lineáris leképezések folytonosak.'' A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.  
  
'''Megj.''' A kiszamitasi formulaban skalarvaltozos vektorerteku fuggveny integralja szerepel. Ezt a kovetkezokeppen kell kiszamitani:
 
  
<math>\int\limits_a^b\begin{pmatrix}f_1(t)\\f_2(t)\end{pmatrix}\,dt=\begin{pmatrix}\int\limits_a^b f_1(t) \,dt\\ \int\limits_a^b  f_2(t)\,dt\end{pmatrix}
 
</math>
 
  
===Példa===
+
==Feladat folytonosságra==
'''1.''' Legyen ''G'' a komplex egységkör pozitívan irányítva.
+
:<math>\int\limits_{|z|=1}\frac{1}{z}\mathrm{d}z=\int\limits_{0}^{2\pi} \frac{1}{e^{\mathrm{i}t}}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{2\pi} \mathrm{i}\,\mathrm{d}t=2\pi\mathrm{i}</math>
+
Ahol a valós Newton--Leibniz-formulát alkalmaztuk a komponensfüggvényekre.
+
  
'''2.''' Legyen ''G'' a z(t)=(1+2i)t, ahol t&isin;[0,1].
+
'''Feladat.''' Legyen ''w'' &isin; '''C'''. Igazoljuk, hogy az alábbi függvények folytonosak!
:<math>\int\limits_{G}\overline{z}\mathrm{d}z=\int\limits_{0}^{1} (1-2\mathrm{i})t\cdot (1+2\mathrm{i})\,\mathrm{d}t=\int\limits_{0}^{1}5t\,\mathrm{d}t=\frac{5}{2}</math>
+
# <math>z\mapsto w + z\,</math>
 +
# <math>z\mapsto w\cdot z\,</math>
 +
# <math>z\mapsto \overline{z}\,</math> 
 +
# <math>z\mapsto \frac{1}{z}\quad\quad (z\ne 0)</math>
  
'''3.''' Legyen ''G'' a komplex egységkör felső fele, pozitívan irányítva.
+
''Megoldás.''
:<math>\int\limits_{|z|=1,\mathrm{Im}(z)\geq 0}\overline{z}^2\mathrm{d}z=\int\limits_{0}^{\pi}e^{-2\mathrm{i}t}\cdot \mathrm{i}e^{\mathrm{i}t}\,\mathrm{d}t=\int\limits_{0}^{\pi}e^{-\mathrm{i}t}\,\mathrm{d}t=1-(-1)=2</math>
+
  
===Komplex Newton--Leibniz-formula===
+
Az 1. az '''R'''<sup>2</sup>-ben eltolás a ''w''-nek megfelelő vektorral (Re(''w''), Im(''w''))-vel, így affin leképezés, ami folytonos.  
Ha az f komplex függvény, olyan, hogy van olyan komplex differenciálható F, melyre F'=f, akkor azt mondjuk, hogy az F az f primitív függvénye.  
+
  
'''Komplex Newton--Leibniz-formula.''' Ha a nyílt halmazon értelmezett f komplex függvénynek primitív függvénye az F, akkor minden az f értelmezési tartományában haladó ''G'':[a,b]<math>\to</math>'''C''' görbére:
+
2. a ''w'' mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
:<math>\int\limits_{G}f(z)\,\mathrm{d}z=F(b)-F(a)</math>
+
  
(Ha még nem tudjuk, hogy reguláris függvény analitikus, akkor f-ről fel kell tennünk, hogy folytonos.)
+
3. azaz a konjugálás: (''x'',''y'') <math>\mapsto</math> (''x'',–''y'') a valós tengelyre való tükrözés, ami szintén lineáris.  
  
'''4.''' Legyen <math>f(z)=\frac{1}{z^2}</math>. Mi az egységkörre az integrálja?
+
Végül a reciprok:
:<math>F(z)=-\frac{1}{z}</math>
+
:<math>\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}</math>
primitívfüggvénye f-nek, ezért
+
így, mint '''R'''<sup>2</sup> &sup;<math>\to</math> '''R'''<sup>2</sup> függvény:
:<math>\int\limits_{|z|=1}\frac{1}{z^2}\,\mathrm{d}z=0</math>
+
:<math>\begin{pmatrix}
hiszen zárt a görbe, azaz a pr. fv. a kezdő és végpontban ugyanannyi.
+
x \\
 +
y
 +
\end{pmatrix}\mapsto
 +
\begin{pmatrix}
 +
\cfrac{x}{x^2+y^2} \\
 +
\cfrac{-y}{x^2+y^2}
 +
\end{pmatrix}</math>
 +
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
  
''Bizonyitas.'' A vonalintegrálra vonatkozó Newton--Leibniz-tétel (I. gradiens tétel) a következő: ha &Phi; folytonosan differenciálható, az értelmezési tartományában haladó G görge végpontjai: a és b, akkor
+
'''Feladat.''' Folytonos-e a ''z'' = 0-ban az  
:<math>\int\limits_{G}\mathrm{grad}\,\Phi\mathrm{d}\mathbf{r}=\Phi(b)-\Phi(a)</math>
+
:<math>f(z)=\left\{
Ezt a segédvektormezőkre fogjuk alkalmazni.
+
\begin{matrix}
 +
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
 +
\\
 +
0,\quad\quad \mathrm{ha}\;z=0
 +
\end{matrix}
 +
\right.</math>  
  
:<math>\int\limits_{G}f(z)\mathrm{d}z = \int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} u\mathrm{d}y+v\mathrm{d }x=</math>
+
''Megoldás.''
:<math>=\int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} v\mathrm{d }x+u\mathrm{d}y</math>
+
 +
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,0), akkor:
 +
:<math>f(x,y)=\begin{pmatrix}
 +
\cfrac{y^3}{x^2+y^2} \\
 +
\cfrac{x^4}{x^2+y^2}
 +
\end{pmatrix}</math>  
  
:<math>F=\Phi+i\Psi</math>
+
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
:<math>f=F'=\partial_x\Phi+i\partial_y(-\Phi)=u+vi</math>  
+
:<math>\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|</math>
:<math>f=F'=\partial_y(\Psi)+i\partial_x(\Psi)=u+vi</math>  
+
és
:<math>\mathrm{grad}\,\Phi = (u,-v)</math>
+
:<math>\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2</math>
:<math>\mathrm{grad}\,\Psi = (v,u)</math>
+
így (x,y)<math>\to</math>(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért ''f'' a 0-ban folytonos.
  
:<math>=\int\limits_{G} u\mathrm{d}x-v\mathrm{d }y + i\int\limits_{G} v\mathrm{d }x+u\mathrm{d}y=\Phi(b)-\Phi(a)+i(\Psi(b)-\Psi(a))</math>
 
  
u,v folytonos differenciálhatósága sajnos csak egy későbbi tétel következménye, miszerint reguláris függvény analitikus. Addig a tételben ideiglenesen ki kell kötnünk, hogy ''f'' folytonos.
+
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő '''R'''<sup>2</sup>-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.  
  
'''Tétel.''' Ha a ''D'' nyílt halmazon értelmezett ''f'' függvénynek van primitív függvénye, akkor ''f'' körintegrálja minden a ''D''-ben haladó zárt görbére nulla:
+
'''Állítás.''' Ha ''f'' és ''g'' komplex függvények és az ''z''<sub>0</sub>  pontban (mindketten értelmezettek és) folytonosak, akkor  
:<math>\oint\limits_{G} f=0\,</math>
+
# ''f'' + ''g''  
 +
# ''f'' <math>\cdot</math> ''g''
 +
# <math>\overline{f}</math>
 +
# ''g''(''z''<sub>0</sub>) &ne; 0 esetén ''f''/''g''
 +
is folytonos ''z''<sub>0</sub>-ban. 
  
További információhoz akkor jutunk, ha a többváltozós analízis cirkulációmentességi feltételeit vizsgáljuk. Ehhez a vissza kell vezetni a komplex integrált a vonalintegrálra.
 
  
==Cirkulációmentesség==
+
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
  
===Gauss-tétel===
+
'''Feladat.''' Folytonos-e a ''z'' = i-ben az
Lássuk először Gauss-tétellel, hogyan következtethetünk a körintegrál eltűnésére.
+
:<math>f(z)=\left\{
 +
\begin{matrix}
 +
\cfrac{\mathrm{i}z+1}{|z-\mathrm{i}|},\quad\quad\mathrm{ha}\;z\ne \mathrm{i}\\
 +
\\
 +
0,\quad\quad \mathrm{ha}\;z=\mathrm{i}
 +
\end{matrix}
 +
\right.</math>
  
'''Gauss-tétel''' ('''R'''<sup>3</sup>-ra) Legyen '''v''' nyílt halmazon értelmezett C<sup>1</sup>-függvény, ''V'' merheto, peremes térrész és legyen ennek pereme a &part;''V'' kifelé irányított felület. Ha ''V'' a peremével együtt Dom('''v''')-ben van, akkor  
+
Ha ''z'' = ''x'' + i''y'' és (''x'',''y'') &ne; (0,1), akkor:
:<math>\oint\limits_{\partial V} \mathbf{v}\;\mathrm{d}\mathbf{f}=\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V</math>
+
:<math>f(x,y)=\begin{pmatrix}
 +
\cfrac{-y+1}{\sqrt{x^2+(y-1)^2}} \\
 +
\cfrac{x}{\sqrt{x^2+(y-1)^2}}
 +
\end{pmatrix}</math>  
  
'''Megjegyzes.''' Az itt szereplő fogalmak közül néhányról beszélnünk kell.
+
Már az első komponens határértéke sem létezik, hisz (x,y)=(0,y) mentén alulról a (0,1)-hez tartva a határérték -1, az x=y-1 mentén pedig -1/gyök kettő.
  
''Felület.'' Legyenek a &phi;<sup>i</sup>:D<sub>i</sub> <math>\to</math> '''R'''<sup>3</sup> függvények folytonosan differenciálhatóak és injektívek int(''D''<sub>i</sub>)-n, melyek mérhető tartományok '''R'''<sup>2</sup>-ben. Ha a képeik egymásba nem nyúlók, azaz int(&phi;<sub>i</sub>(''D''<sub>i</sub>)) &cap; int(&phi;<sub>j</sub>(''D''<sub>j</sub>)) üres, ha ''i'' &ne; ''j'', és a képek uniója összefüggő halmaz, akkor U Ran(&phi;<sup>i</sup>)-t előállítottuk paraméteres felületként.  
+
A második tényező szintén nem.
  
Példaként említhetjük a kúp paraméterezését:
+
==Feladatok határértékre==
  
:<math>\mathbf{r}_1(\varphi, h)=\left\{\begin{matrix} h\sin\vartheta\cos \varphi\\ h\sin\vartheta\sin\varphi\\ h\end{matrix}\right.</math>, ha &phi; &isin; [0,2&pi;] és ''h'' &isin; [0,''H'']
+
'''Feladat.'''  Igazoljuk definíció szerint, hogy
:<math>\mathbf{r}_2(\varphi, h)=\left\{\begin{matrix}r\cos\varphi\\r\sin\varphi \\ H\end{matrix}\right.</math>, ha &phi; &isin; [0,2&pi;] és ''r'' &isin; [0,''R'']
+
#<math>\lim\limits_{z\to 0}\frac{1}{z}=\infty</math>
ahol H a kúp magassága, R az alapkörsugara, &theta; a félkúpszöge (z a tengelye, O a csúcsa). Tehát itt a paramétertartományok [0,2&pi;] &times; [0,''H''] és [0,2&pi;] &times; [0,''R''].
+
#<math>\lim\limits_{z\to \infty}\frac{1}{z}=0</math>
 +
 +
1. Legyen &epsilon; > 0. Ekkor azt kell belátnuk, hogy létezik &delta; > 0, hogy teljesüljön |''z''| < &delta; esetén, hogy a függvényérték a &infin; &epsilon; sugarú környezetébe esik, azaz:
 +
:<math>\left|\frac{1}{z}\right|>\frac{1}{\varepsilon}</math>
 +
Világos, hogy ezt azt jelenti, hogy
 +
:<math>|z|<\varepsilon</math>
 +
amit reciprokvonással kaptunk. Ha tehát ha &delta; := &epsilon; és |''z''| < &delta;, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.
  
''C<sup>1</sup>-ség''. Ez azért kell, mert a térfogati integrált a ''D'' paramétertartományon a  
+
2. Legyen &epsilon; > 0. Ekkor azt kell belátnuk, hogy létezik &delta; > 0, hogy teljesüljön |''z''| > 1/&delta; esetén, hogy a függvényérték a 0-nak &epsilon; sugarú környezetébe esik, azaz:
:<math>\int\limits_{V} \mathrm{div}\,\mathbf{v}\;\mathrm{d}V=\int\limits_{\mathbf{r}^{-1}(V)}\mathrm{div}\,\mathbf{v}(\mathbf{r}(u,v,w))|\mathrm{J}^{\mathbf{r}}(u,v,w)|\;\mathrm{d}u\mathrm{d}v\mathrm{d}w</math>
+
:<math>\left|\frac{1}{z}\right|<\varepsilon</math>
képlettel számoljuk és ahhoz, hogy ez létezzen, ahhoz pl. az kell, hogy ne csak az '''r''' = '''r'''(u,v,w) legyen folytonosan diff.-ható, de a divergencia is folytonos legyen.
+
Világos, hogy ezt azt jelenti, hogy
 +
:<math>|z|>\frac{1}{\varepsilon}</math>
 +
amit reciprokvonással kaptunk. Ha tehát ha &delta; := &epsilon; és |''z''| > 1/&delta;, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.
  
'''Gauss-tétel''' ('''R'''<sup>2</sup>-re) Legyen ''D'' mérhető peremes síkrész, melynek perme, azaz a &part;D halmaz kifelé irányított síkbeli felület. Ha '''v''' nyílt halmazon értelmezett folytonosan '''R'''-differenciálható és Dom('''v''') tartalmazza ''D'' lezártját, akkor
+
A végtelen határérékkel történő számolás szabályai előtt definiálnunk kell néhány kibővített műveletet. Ezt a következők szellemében tesszük:
:<math>\oint\limits_{\partial D} \mathbf{v}\,\mathrm{d}\mathbf{f}=\int\limits_{D} \mathrm{div}\,(\mathbf{v})\mathrm{d}\mathbf{A}</math>
+
ahol &int;d'''f''' kétdimenziós felületi integrált jelöl, &int;d'''A''' pedig kétdimenziós tartományi integrált.
+
  
Így tehát a komplex vonalintegrál kiszámításához csak a '''P'''' és '''Q'''' felületi integrálját kell kiszámítanunk, amihez a Gauss-tételbeli divergenciákat kell kiszámítanunk:
+
:Ha ''a'' és ''b'' valamelyike a &infin;  szimbólum (a másik, ha nem ilyen, akkor komplex szám), akkor az ''a'' * ''b'' alapműveletet akkor értelmezzük a ''c'' szimbólumként (mely szintén vagy komplex szám, vagy az &infin;), ha ''minden'' ''a'' határértékű ''f'' függvény esetén  és ''minden'' ''b'' határértékű ''g'' függvény esetén a ''f''*''g'' ''szükségszerűen'' a ''c''-hez tart. Ekkor mondjuk tehát, hogy az
:<math>\mathrm{div}\mathbf{P}'=-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}=0</math>
+
::''a'' * ''b'' = ''c''
:<math>\mathrm{div}\mathbf{Q}'=\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}=0</math>
+
:definíció jó.
Ami, a C-R-egyenletek miatt igaz.
+
Például a &infin; + &infin; művelet feltétlenül értelmezett és értéke a &infin;, mert könnyen látható, hogy ''bármely'' két, a &infin;-hez tartó függvény összege is a &infin;-hez tart. De a 0 <math>\cdot</math> &infin; művelet nem értelmezhető, mert van két függvénypár, mely ilyen alakú határértékekkel rendelkezik, de a szorzatuk máshoz tart. Pl.: (1/Re(z)) <math>\cdot</math> Re(z) <math>\to</math> 1, a z=0-ban, de (1/Re(z)) <math>\cdot</math> 2 Re(z) <math>\to</math> 2 a z=0-ban.
  
Innen
+
'''Definíció''' – ''Végtelen és alapműveletek'' – Az alábbi műveleti szabályokat vezetjük be a &infin;, szimbólumra vonatkozóan, az alábbiakban ''z'' tetszőleges komplex szám, ''n'' tetszőleges nemnulla komplex szám:
:<math>\int\limits_{\partial D}f(z)\mathrm{d}z=0</math>
+
# <math>\infty+z=\infty </math>,
 +
# <math>\infty-z=\infty,  \quad\quad z-\infty=\infty</math>, 
 +
# <math>\infty\cdot\infty=\infty, \quad\quad \infty\cdot n=\infty</math>,
 +
# <math>\frac{z}{\infty}=0 \quad\quad \frac{\infty}{z}=\infty</math>,
 +
továbbá a szorzás és az összeadás kommutatív.
  
===Stokes-tétel===
+
Megjegyezzük még, hogy <math>\overline{\infty}=\infty</math>, azaz a végtelen konjugáltja saját maga.
  
Nézzük meg Stokes-tétellel is a bizonyítást.
+
'''Definíció''' – ''Határozatlan esetek'' –  Az alábbi alapműveletek nem értelmezhetők:
 +
# <math>\infty-\infty</math>,
 +
# <math>0\cdot\infty, \quad\quad \infty\cdot 0</math>,
 +
# <math>\frac{\infty}{\infty}</math>,
 +
# <math>\frac{0}{0}</math>
  
'''Stokes-tétel''' ('''R'''<sup>3</sup>-ra) Legyen a nyílt halmazon értelmezett '''v''' vektorfüggvény folytonosan differenciálható, a Dom('''v''')-beli ''F'' felületen, aminek a &part;''F'' pereme legyen szintén Dom('''v''')-beli és ''F''-hez ''megfelelően irányított'' görbe. Ekkor 
 
:<math>\oint\limits_{\partial F} \mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{F} \mathrm{rot}\,\mathbf{v}\,\mathrm{d}\mathbf{f}</math>
 
  
'''Megjegyzes.''' A térbeli cirkulációmentességre vonatkozó nevezetes tétel ezzel a tétellel kapcsolatos. Ebben az esetben, bár az egyszeres összefüggőség nincs megkötve Dom('''v''')-re vonatkozólag, előjön a következményében:
+
'''Tétel''' – ''Végtelen határérték és alapműveletek'' – Ha az ''f'' és ''g'' komplex függvényeknek létezik határértékük az <math>\scriptstyle{u\in \overline{\mathbf{C}}}</math> helyen, az ''f'' * ''g'' alapművelettl elkészített függvény értelmezési tartományának torlódási pontja ''u''  és a lim<sub>u</sub> ''f'' * lim<sub>u</sub> ''g'' alapművelet elvégezhető, akkor az ''f'' * ''g'' függvénynek is van határértéke ''u''-ban és ez:
 +
:<math> \lim\limits_u(f\mbox{*}g)=\lim\limits_u f\,\mbox{*}\, \lim\limits_u g \,</math>
 +
Ezenkívül a határozatlan esetekben, amikor a határértékekkel végzett műveletek nem értelmezettek, az alapműveletekkel elkészített függvények határértékeire nem adható általános képlet (mert alkalmasan választott esetekben máshoz és máshoz tartanak).
  
''Következmény.'' Ha az egyszeresen összefűggő ''U'' nyílt halmazon értelmezett '''v''' vektormező folytonosan differenciálható, akkor az alábbi három kijelentés ekvivalens egymással:
+
''A bizonyításról.'' Ennek a tételnek a bizonyítása minden nehézség nélkül elvégezhető vagy az '''R'''<sup>2</sup>-beli sorozatokra vonatkozó átviteli elv vagy a komponensfüggvények határértékére történő hivatkozás útján. Minenekelőtt azt kell szem előtt tartanunk, hogy a végtelenhez való tartás, a függvény abszolútértékének plusz végtelenhez tartását jelenti:
# rot '''v''' eltűnik ''U''-n,
+
:<math>\exists\lim\limits_{z_0}f=\infty \quad\Longleftrightarrow \quad\exists\lim\limits_{z_0}|f|=+\infty</math>
# minden ''U''-ban haladó zárt görbén a '''v''' körintegrálja nulla,
+
# létezik '''v'''-nek ''U''-n potenciálja, azaz olyan &Phi; : ''U'' <math>\to</math> '''R''' függvény, melyre grad &Phi; = '''v'''.
+
  
Itt az egyszeres összefüggőség azért kell, mert ilyen esetben a zárt görbéhez található olyan felület, mely a tartományban halad és pereme a görbe.  
+
'''Feladat.''' Adjuk példákat arra, hogy a határozatlan alakú határértékeket valóban nem lehet definiálni.
  
'''Stokes-tétel''' ('''R'''<sup>2</sup>-re) Legyen a ''D'' síkbeli tartomany határa a &part;D zárt görbe, megfelelően irányítva. Ha '''v''' folytonosan '''R'''-differenciálható egy nyílt halmazon, mely tartalmazza ''D'' lezártját, akkor
+
''Nézzük a 0-ban az alábbi függvényeket:''
:<math>\oint\limits_{\partial D} \mathbf{v}\,\mathrm{d}\mathbf{r}=\int\limits_{D} \mathrm{rot}(\mathbf{v})\,\mathrm{d}A</math>
+
:<math>\frac{2}{z}\;-\;\frac{1}{z}=\frac{1}{z}\quad\to \infty</math> miközben <math>(\frac{1}{z}+2)\;-\;\frac{1}{z}=2\quad\to 2</math>
  
Ekkor csak a rotációt kell kiszámítanunk:
+
<math>\frac{1}{z}\;\cdot z=1\quad\to 1</math> miközben <math>\frac{2}{z}\;\cdot\;z=2\quad\to 2</math>
  
:<math>\mathrm{rot}\mathbf{P}=\frac{\partial u}{\partial y} - \left(-\frac{\partial v}{\partial x}\right)=0</math>
+
:<math>\frac{1}{z}/\frac{1}{z}=1\quad\to 1</math> miközben <math>\frac{2}{z}/\frac{1}{z}=2\quad\to 2</math>  
:<math>\mathrm{rot}\mathbf{Q}=\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}=0</math>
+
  
Ami, a C-R-egyenletek miatt igaz.
+
<math>\frac{z}{z}=1\quad\to 1</math> miközben <math>\frac{2z}{z}=2\quad\to 2</math>
  
Mindezekből tehát következik, hogy ha a ''D'' peremes síktartomány lezártján az ''f'' komplex függvény (értelmezett és) analitikus, akkor ''D'' peremén az ''f'' integrálja eltünik. A következőkben élesítjük úgy a tételt, hogy elegendő legyen feltenni benne, hogy ''f'' egyszer komplexen deriválható, egyszeresen összefüggő nyílt halmazon értelmezett és a görbe egy benne haladó egyszerű zárt görbe.
+
'''Feladat.''' Számítsuk ki az alábbi határértékeket, ha léteznek!
 +
# <math>\lim\limits_{z\to 0}\frac{\mathrm{Im}(z)}{z}</math>,
 +
# <math>\lim\limits_{z\to i}\frac{z-i}{z^2+1}</math>,
 +
# <math>\lim\limits_{z\to 1}\frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i}</math>,
 +
# <math>\lim\limits_{z\to 0}\frac{1}{z}-\frac{2}{\overline{z}}</math>,
 +
# <math>\lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i}</math>,
  
===Green-tétel===
+
''Megoldás.''
 +
1. nemnulla ''z''-re:
 +
:<math>\frac{\mathrm{Im}(z)}{z}=\frac{\mathrm{Im}(z)\overline{z}}{z\overline{z}}=\frac{yx-y^2\mathrm{i}}{x^2+y^2}</math>
 +
de ekkor például az első komponensfüggvény ''x'' = 0 felől közelítve 0, míg az ''x'' = ''y''-felől:1/2, azaz nem létezik az első komponensnek a (0,0)-ban határértéke, azaz a komplex függvénynek sem.
  
A síkbeli Stokes-tételt néha Green-tételnek is nevezik, ha az alábbi alakban van írva. Ez a következő. Legyen a ''D'' síkbeli tartomany határa a &part;D zárt görbe, megfelelően irányítva. Ha a (P,Q) síkbeli vektormező folytonosan '''R'''-differenciálható egy nyílt halmazon, mely tartalmazza ''D'' lezártját, akkor
+
2. <math>\frac{z-i}{z^2+1}=\frac{z-i}{(z+i)(z-i)}=\frac{1}{z+i}\quad\longrightarrow_{z\to i}\quad\infty</math>
:<math>\oint\limits_{\partial D} P\,\mathrm{d}x+Q\,\mathrm{d}y=\int\limits_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\,\mathrm{d}x\mathrm{d}y</math>
+
  
HF: Bizonyítsuk be a tételt síkbeli normáltartományra, azaz olyan ''D''-re, melyre:
+
3. <math>\frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i}=\frac{ \frac{1+iz-i}{z-1} }{ \frac{1-iz^2+i}{z^2-1} }=\frac{1+iz-i}{z-1}\cdot \frac{(z+1)(z-1)}{1-iz^2+i}</math>
:<math>D=\{(x,y)\in \mathbf{R}^2\mid a\leq x\leq b, \;\psi(x)\leq y\leq \varphi(x)\}</math>  
+
::<math>\left.\frac{iz+1-i}{-iz^2+i+1}(z+1)\right|_1=\frac{1}{1}\cdot 1</math>
ahol minden x&isin;[a,b]-re &psi;(x)&le;&phi;(x). Itt &psi;, &phi; folytonosan differenciálható.
+
  
===Goursat-lemma, Cauchy-féle integráltétel===
+
4. <math>\frac{1}{z}-\frac{2}{\overline{z}}=\frac{\overline{z}-2z}{z\overline{z}}</math>
 +
csak a valós részt nézve:
 +
:<math>\left|\frac{-x}{x^2+y^2}\right|</math>
 +
az (x,y)=(x,0) esetben a (0,0)-hoz tartva: végtelen, de (x,y)=(0,y), akkor 0. tehát nincs határérték. 
  
Goursat ennél is mélyebb eredményt talált:
+
5. <math>\lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i}=\left(\frac{\infty}{0}\right)=\infty</math>.
  
  
'''Goursat-lemma'''. A T háromszöglapon reguláris ''f'' komplex függvény integrálja a háromszög határán nulla:
+
'''Feladat.''' Adjuk meg minden ''z''<sub>0</sub> &isin; '''C''' számra az alábbi függvény határértékét!
:<math>\oint\limits_{\partial T}f=0\,</math>
+
# <math>f(z)=\frac{z}{\overline{z}-z}</math>,
 +
# <math>f(z)=\frac{z^2}{\overline{z}z-1}</math>,
 +
 +
1. <math>\mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}\ne z\}</math>
  
''Bizonyitas.'' A haromszoget osszuk fel 4 egybevago haromszogre: &Delta;=&Delta;<sub>1</sub>&cup;&Delta;<sub>2</sub>&cup;&Delta;<sub>3</sub>&cup;&Delta;<sub>4</sub>. Ha jol iranyitjuk a kis haromszogek hatarat, akkor
+
Folytonos az értelmezési tartományában. A határon:
:<math>\int\limits_{\Delta}f=\int\limits_{\Delta_1}f+\int\limits_{\Delta_2}f+\int\limits_{\Delta_3}f+\int\limits_{\Delta_4}f</math>
+
:<math>\frac{z}{\overline{z}-z}=\frac{x+iy}{2iy}\,</math>
Ezt felulbecsulhetjuk a kovetkezovel:
+
''z''<sub>0</sub>  &ne; 0 esetén
:<math>\left|\int\limits_{\Delta}f\right|\leq\sum\limits_{i=1}^4\left|\int\limits_{\Delta_i}f\right|\leq 4\max\limits_{i=1}^4\left|\int\limits_{\Delta_i}f\right|=4\left|\int\limits_{\Delta^{(1)}}f\right|</math>
+
:<math>\left|\frac{x+iy}{2iy}\right|\geq \frac{|z_0|/2}{2|y|}\to \infty</math>
most &Delta;<sup>(1)</sup>-et bontjuk fel es folytatva a felosztast egy nullahoz tarto nagysagu haromszogekbol allo egymasba skatulyazott (&Delta;<sup>(''n'')</sup>) haromszogsorozatot kapunk, mely egy ponthoz, a ''z''<sub>0</sub>-hoz tart. A haromszogek kerulete K/2<sup>''n''</sup>, ha K az eredeti haromszog kerulete. Erra a sorozatra tovabba:
+
''z''<sub>0</sub> = 0 esetén:  
:<math>\left|\int\limits_{\Delta}f\right|\leq 4^n\left|\int\limits_{\Delta^{(n)}}f\right|</math>
+
:<math>\frac{x+iy}{2iy}=\frac{1}{2}-i\frac{x}{2y}</math>
igaz.
+
ismert, hogy nincs határérték.
  
Most felhasznaljuk a komplex differencialhatosagot. Tetszoleges &epsilon;>0 szamra van olyan kornyezete ''z''<sub>0</sub>-nak, es a haromszogsorozatnak olyan N indexe, melyre az n-edik tagok mar a kornyezetben vannak es az alabbi formulaban az |&epsilon;(z)|<&epsilon;:
+
2. <math>\mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}z\ne 1\}</math>
:<math>f(z)-f(z_0)-f'(z_0)(z-z_0)-\varepsilon(z)(z-z_0)</math>
+
 
Ezt integralva a haromszogre:
+
Az egységkör pontjaitól különbözőkre folytonos, az egységkörön a végtelen, a végtelenben pedig nincs határérték. Ugyanis:
:<math>|\int\limits_{\Delta^{(n)}}f(z)|=|\int\limits_{\Delta^{(n)}}f(z_0)+f'(z_0)(z-z_0)+\varepsilon(z)(z-z_0)\,dz|=|\int\limits_{\Delta^{(n)}}\varepsilon(z)(z-z_0)\,dz|=</math>
+
:<math>|f(z)|=\frac{|z|^2}{|\overline{z}z-1|}</math>,
Itt az utolso kifejezest az ivhossz integrallal felulbecsuljuk:
+
így az egységkörön a számláló az 1-hez, a nevező a nullához tart. A végtelenben pedig ''t'' valóssal:
:<math>\leq\int\limits_{\Delta^{(n)}}|\varepsilon(z)||(z-z_0)|\,d|z|<\varepsilon K^2/4^n</math>
+
:<math>\lim\limits_{t\to +\infty} f(t+0.i)=\lim\limits_{t\to +\infty} \frac{t^2}{t^2-1}= 1\,</math>
Mivel &epsilon; tetszoleges volt, ezert az integral eltunik.
+
:<math>\lim\limits_{t\to +\infty} f(t.i)=\lim\limits_{t\to +\infty} \frac{-t^2}{t^2-1}= -1\,</math>
  
Innen már könnyen adódik a komplex analízis főtétele, melyet először Cauchy modott ki ugyan csak folytonosan diffható komplex függvényre, de Goursat ezt megfejelte a gyengített feltételével:
 
 
   
 
   
'''Főtétel.''' Ha a ''D'' egyszeresen összefüggő tartományon reguláris az ''f'' komplex függvény, akkor a tartományban minden zárt G egyszeru görbén a függvény integrálja nulla:
 
:<math>\oint\limits_{G} f=0\,</math>
 
  
===Nehany topologiai fogalom===  
+
=='''C'''-differenciálhatóság==
 +
A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől
 +
:<math>(w\cdot z)'=w\in \mathbf{C}</math>
 +
:<math>(z^2)'=2z\in \mathbf{C}</math>
 +
mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a
 +
:<math>(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}</math>
 +
mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.
 +
 
 +
'''Definíció''' - ''Komplex differenciálhatóság, komplex derivált'' - Legyen ''f'' a ''z''<sub>0</sub> egy környezetében értelmezett függvény. Azt mondjuk, hogy ''f'' '''C'''-deriválható ''z''<sub>0</sub>-ban és deriváltja a ''w'' szám, ha
 +
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w</math>
 +
 
 +
Jelölése: <math>f'(z_0)</math>.
 +
 
 +
Azt, hogy az f a ''z''<sub>0</sub>-ban komplex deriválható még úgy is jelöljük, hogy
 +
:<math>f\in \mathrm{Diff}_{\mathbf{C}}(z_0)</math>.
 +
 
 +
Pontbeli deriváltra példa a következő.
 +
 
 +
'''Példa.''' Milyen ''n'' egész számokra deriválható a 0-ban az alábbi függvény?
 +
:<math>f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
 +
0, & z=0
 +
\end{cases}
 +
</math>
 +
''Mo.'' Ha ''n''>0, akkor a különbségi hányados:
 +
:<math>\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0</math> ha ''z'' <math>\to</math> 0.
 +
Ha ''n'' = 0, akkor
 +
:<math>\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}</math>
 +
aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).
 +
 
 +
Ha ''n'' < 0, akkor
 +
:<math>\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}</math>
 +
ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.
 +
 
 +
Tehát ''n'' > 0-ra a függvény komplex deriválható a 0-ban, más ''n'' < 1-re nem deriválható.
 +
 
 +
'''Tétel.''' - ''A komplex differenciálhatóság jellemzése'' -  Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:
 +
:1) <math>f\in \mathrm{Diff}_{\mathbf{C}}(z_0)</math>
 +
:2) <math>f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0)</math> és <math>[\mathrm{d}f(x_0,y_0)]\in\mathbf{C}</math>.
 +
 
 +
''Bizonyítás.'' Legyen ''f'' a ''z''<sub>0</sub> = ''x''<sub>0</sub> + i''y''<sub>0</sub>  egy környezetében értelmezett függvény és ''w'' komplex szám.
 +
Tekintsük a következő határértéket:
 +
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-[w]\cdot (z-z_0)}{|z-z_0|}=0</math>
 +
ahol az ''z'', ''z''<sub>0</sub>, ''f''(''z''), ''f''(''z''<sub>0</sub>) mennyisegekre ugy tekintunk, mint vektorokra.
 +
Ez ekvivalens a következővel:
 +
:<math>\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0</math>
 +
ahol az elobb emlitettek mar algebrai ertelemben komplex szamok, nem feltetlenul vektorok.  Azaz
 +
:<math>\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0</math>
 +
Itt (''z''-''z''<sub>0</sub>)/|''z''-''z''<sub>0</sub>| a komplex egységkörön "futó" függvény, hossza 1, ezért a fenti ekvivalnes a következővel:
 +
:<math>\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0</math>
 +
Ami viszont ugyanakkor igaz mint:
 +
:<math>\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w</math>
 +
Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol ''w'' a komplex derivált, akkor azt kapjuk, hogy a ''w'' mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z<sub>0</sub>)]=[w].
 +
 
 +
Másfelől, ha f valósan deriválható és a deriváltja a ''w'' komplex számot reprezentálja, akkor komplexen is deriválható es komplex derivaltja pont ''w''.
 +
 
 +
'''Cauchy--Riemann-egyenletek''' A fenti tételben a [df(z)] &isin; '''C''' feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha ''f'' = ''u'' + i''v'' és ''z'' =  ''x'' +i''y'', akkor
 +
:<math>\begin{cases}
 +
\partial_xu=\partial_yv\\
 +
\partial_yu=-\partial_x v
 +
\end{cases}</math>
 +
 
 +
'''Komplex deriváltfüggvény''' Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:
 +
:<math>f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu</math>
 +
 
 +
'''Definíció''' - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.
 +
 
 +
'''Feladat.''' Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?
 +
 
 +
'''Feladat.''' Legyen <math>f(x+iy)=x^2+iy^3</math>. Hol komplex deriválható és hol reguláris f?
 +
 
 +
 
 +
 
 +
===Harmonikus társ keresése===
 +
 
 +
Azt mondjuk, hogy a kétszer differenciálható u=u(x,y) valós függvény ''harmonikus'', ha
 +
:<math>u_{xx}''+u_{yy}''\equiv \Delta u\equiv 0\, </math>
 +
itt &Delta; a Laplace-operátor (nem a Laplace-transzformátor!, hanem a vektoranalízisbeli vektormezőre Hesse-mátrix nyoma).
 +
 
 +
A C--R-egyenletek mutatják, hogy ha f=u+iv reguláris, akkor u és v harmonikus függvények. Ugyanis:
 +
:<math>u_x'=v_y'\,</math> és
 +
:<math>v_x'=-u_y'\,</math>
 +
De u és v Hesse-mátrixa is szimmetrikus, ezért:
 +
 
 +
:<math>v_{yy}''=u_{xy}''=u_{yx}''=-v_{xx}''\,</math>
 +
azaz
 +
:<math>\Delta v\equiv 0\,</math> és fordítva.
 +
 
 +
Általában az a feladat, hogy ha adott u, akkor keressük az ő harmonikus társát, v-t, mellyel u+iv reguláris. Ha tehát adott u, akkor van F és G, hogy
 +
:<math>F=v_y'\,</math>
 +
:<math>G=-v_x'\,</math>
 +
Ami az egzakt differenciálegynlet megoldásánál tanult parciális differenciálegyenlet megoldását igényli v-re, mint potenciálfüggvényre (ekkor f-et komplex pontenciálnak nevezzük, mármint a (<math>v'_x(x,y)</math>,<math>v_y'(x,y)</math>) síkbeli vektormező komplex pontenciáljának; a v valódi pontenciálja lenne. Ennek szükséges utánanézni máshol is!)
 +
 
 +
'''1..''' Keressünk harmonikus párt az
 +
:<math>u=x^4+y^4-6x^2y^2\,</math>
 +
függvényhez!
 +
 
 +
''Mo.'' Van neki, ha &Delta;=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.
  
Egy ''D'' nyilt halmaz '''C'''-ben egyszeresen osszefuggo, ha benne minden zart gorbe ''pontra deformalhato''.
+
<center>
Ez utobbi a kovetkezot jelenti. Azt mondjuk, hogy a &gamma;:[a,b]<math>\to</math>''D'' zart gorbe  a <math>z_0</math>  ''D''-beli pontra deformalhato a ''D'' tartomanyban, ha letezik olyan &Gamma;:[0,1]<math>\to</math> <math>D^{[a,b]}</math> gorbe erteku fuggveny, melyre &Gamma;(1)=&gamma;, &Gamma;(0)=<math>z_0</math> konstans gorbe es &Gamma; az [a,b] es <math>D^{[a,b]}</math> terek kozott hato folytonos lekepezes a szupremumnorma szerint.
+
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/6. gyakorlat |6. gyakorlat]]
 +
|}
 +
{| class="wikitable" style="text-align:center"
 +
|- bgcolor="#efefef"
 +
|[[Matematika A3a 2008/8. gyakorlat |8. gyakorlat]]
 +
|}
 +
</center>
  
''Csillagszeru'' egy ''H'' halmaz '''C'''-ben, ha van olyan ''H''-beli pont ''c'' pont, hogy barmely ''H''-beli ''z'' pontra a [''cz''] szakasz ''H''-ban van.
 
  
''Pelda.'' Egy csillagszeru tartomany egyszeresen osszefuggo, mert a csillagpontra valo [0,1]-beli aranyszammal parameterezett kozeppontos kicsinyites kepei alkotta parameteres gorbesereg ilyen.
 
  
  
 
[[Kategória:Matematika A3]]
 
[[Kategória:Matematika A3]]

A lap jelenlegi, 2016. március 21., 10:39-kori változata

<Matematika A3a 2008

Tartalomjegyzék

Folytonosság

Azt mondjuk, hogy az AC halmazon értelmezett f függvény folytonos a zA pontban, ha z-ben f folytonos mint R2A \to R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.

A többváltozós valós analízisből ismert tény miatt fennáll:

Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:

f(z)\equiv f(x,y)=u(x,y)+\mathrm{i}\cdot v(x,y)

ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:

  1. f folytonos a z0-ban
  2. u és v függvények folytonosak az (x0,y0)-ban

Határérték

Komplex függvény C-beli pontban vett C-beli határértéke ugyanúgy értelmezett, mint az R2 esetben. Itt is érvényes, hogy pontosan akkor látezik a határérték, ha a komponensfüggvényeknek létezik a határértéke és ekkor a határérték egyenlő lesz a valós és képzetes komponens határértékéből alkotott komplex számmal.

A ∞ miatt érdemes külön is megfogalmazni a határérték definícióját, bár az teljesen analóg a valós esettel. Legyen f egy az AC halmazon értelmezett, C-be képező függvény. Legyen \scriptstyle{u\in \overline{\mathbf{C}}} az A torlódási pontja, azaz minden r > 0 esetén legyen olyan aA, hogy a ∈ Br(u)\{u}. Azt mondjuk, hogy az f-nek a \scriptstyle{v\in \overline{\mathbf{C}}} elem határértéke az u-ban, ha

minden ε > 0 esetén létezik olyan δ > 0, hogy minden zA ∩ Bδ(u)\{u}-re f(z) ∈ Bε(v)

ahol természetesen a ∞ környezetei a már említett módon értendők.


A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor


Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.

\lim\limits_{z\to z_0} f(z)=f(z_0)

A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.


Feladat folytonosságra

Feladat. Legyen wC. Igazoljuk, hogy az alábbi függvények folytonosak!

  1. z\mapsto w + z\,
  2. z\mapsto w\cdot z\,
  3. z\mapsto \overline{z}\,
  4. z\mapsto \frac{1}{z}\quad\quad (z\ne 0)

Megoldás.

Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.

2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.

3. azaz a konjugálás: (x,y) \mapsto (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.

Végül a reciprok:

\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{|z|^2}

így, mint R2\to R2 függvény:

\begin{pmatrix}
x \\
y
\end{pmatrix}\mapsto 
\begin{pmatrix}
\cfrac{x}{x^2+y^2} \\
\cfrac{-y}{x^2+y^2}
\end{pmatrix}

amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.

Feladat. Folytonos-e a z = 0-ban az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{Im}(z)^3+\mathrm{i}\cdot\mathrm{Re}(z)^4}{\overline{z}\cdot z},\quad\quad\mathrm{ha}\;z\ne 0\\
\\
0,\quad\quad \mathrm{ha}\;z=0
\end{matrix}
\right.

Megoldás.

Ha z = x + iy és (x,y) ≠ (0,0), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{y^3}{x^2+y^2} \\
\cfrac{x^4}{x^2+y^2}
\end{pmatrix}

A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:

\left|\cfrac{y^3}{x^2+y^2}\right|=|y|\cdot\frac{y^2}{x^2+y^2}\leq |y|\cdot\frac{y^2}{y^2}=|y|

és

\left|\cfrac{x^4}{x^2+y^2}\right|=x^2\cdot\frac{x^2}{x^2+y^2}\leq x^2\cdot\frac{x^2}{x^2}=x^2

így (x,y)\to(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.


Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.

Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor

  1. f + g
  2. f \cdot g
  3. \overline{f}
  4. g(z0) ≠ 0 esetén f/g

is folytonos z0-ban.


Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).

Feladat. Folytonos-e a z = i-ben az

f(z)=\left\{
\begin{matrix}
\cfrac{\mathrm{i}z+1}{|z-\mathrm{i}|},\quad\quad\mathrm{ha}\;z\ne \mathrm{i}\\
\\
0,\quad\quad \mathrm{ha}\;z=\mathrm{i}
\end{matrix}
\right.

Ha z = x + iy és (x,y) ≠ (0,1), akkor:

f(x,y)=\begin{pmatrix}
\cfrac{-y+1}{\sqrt{x^2+(y-1)^2}} \\
\cfrac{x}{\sqrt{x^2+(y-1)^2}}
\end{pmatrix}

Már az első komponens határértéke sem létezik, hisz (x,y)=(0,y) mentén alulról a (0,1)-hez tartva a határérték -1, az x=y-1 mentén pedig -1/gyök kettő.

A második tényező szintén nem.

Feladatok határértékre

Feladat. Igazoljuk definíció szerint, hogy

  1. \lim\limits_{z\to 0}\frac{1}{z}=\infty
  2. \lim\limits_{z\to \infty}\frac{1}{z}=0

1. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| < δ esetén, hogy a függvényérték a ∞ ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|>\frac{1}{\varepsilon}

Világos, hogy ezt azt jelenti, hogy

|z|<\varepsilon

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| < δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

2. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| > 1/δ esetén, hogy a függvényérték a 0-nak ε sugarú környezetébe esik, azaz:

\left|\frac{1}{z}\right|<\varepsilon

Világos, hogy ezt azt jelenti, hogy

|z|>\frac{1}{\varepsilon}

amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| > 1/δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.

A végtelen határérékkel történő számolás szabályai előtt definiálnunk kell néhány kibővített műveletet. Ezt a következők szellemében tesszük:

Ha a és b valamelyike a ∞ szimbólum (a másik, ha nem ilyen, akkor komplex szám), akkor az a * b alapműveletet akkor értelmezzük a c szimbólumként (mely szintén vagy komplex szám, vagy az ∞), ha minden a határértékű f függvény esetén és minden b határértékű g függvény esetén a f*g szükségszerűen a c-hez tart. Ekkor mondjuk tehát, hogy az
a * b = c
definíció jó.

Például a ∞ + ∞ művelet feltétlenül értelmezett és értéke a ∞, mert könnyen látható, hogy bármely két, a ∞-hez tartó függvény összege is a ∞-hez tart. De a 0 \cdot ∞ művelet nem értelmezhető, mert van két függvénypár, mely ilyen alakú határértékekkel rendelkezik, de a szorzatuk máshoz tart. Pl.: (1/Re(z)) \cdot Re(z) \to 1, a z=0-ban, de (1/Re(z)) \cdot 2 Re(z) \to 2 a z=0-ban.

DefinícióVégtelen és alapműveletek – Az alábbi műveleti szabályokat vezetjük be a ∞, szimbólumra vonatkozóan, az alábbiakban z tetszőleges komplex szám, n tetszőleges nemnulla komplex szám:

  1. \infty+z=\infty ,
  2. \infty-z=\infty,  \quad\quad z-\infty=\infty,
  3. \infty\cdot\infty=\infty, \quad\quad \infty\cdot n=\infty,
  4. \frac{z}{\infty}=0 \quad\quad \frac{\infty}{z}=\infty,

továbbá a szorzás és az összeadás kommutatív.

Megjegyezzük még, hogy \overline{\infty}=\infty, azaz a végtelen konjugáltja saját maga.

DefinícióHatározatlan esetek – Az alábbi alapműveletek nem értelmezhetők:

  1. \infty-\infty,
  2. 0\cdot\infty, \quad\quad \infty\cdot 0,
  3. \frac{\infty}{\infty},
  4. \frac{0}{0}


TételVégtelen határérték és alapműveletek – Ha az f és g komplex függvényeknek létezik határértékük az \scriptstyle{u\in \overline{\mathbf{C}}} helyen, az f * g alapművelettl elkészített függvény értelmezési tartományának torlódási pontja u és a limu f * limu g alapművelet elvégezhető, akkor az f * g függvénynek is van határértéke u-ban és ez:

 \lim\limits_u(f\mbox{*}g)=\lim\limits_u f\,\mbox{*}\, \lim\limits_u g \,

Ezenkívül a határozatlan esetekben, amikor a határértékekkel végzett műveletek nem értelmezettek, az alapműveletekkel elkészített függvények határértékeire nem adható általános képlet (mert alkalmasan választott esetekben máshoz és máshoz tartanak).

A bizonyításról. Ennek a tételnek a bizonyítása minden nehézség nélkül elvégezhető vagy az R2-beli sorozatokra vonatkozó átviteli elv vagy a komponensfüggvények határértékére történő hivatkozás útján. Minenekelőtt azt kell szem előtt tartanunk, hogy a végtelenhez való tartás, a függvény abszolútértékének plusz végtelenhez tartását jelenti:

\exists\lim\limits_{z_0}f=\infty \quad\Longleftrightarrow \quad\exists\lim\limits_{z_0}|f|=+\infty

Feladat. Adjuk példákat arra, hogy a határozatlan alakú határértékeket valóban nem lehet definiálni.

Nézzük a 0-ban az alábbi függvényeket:

\frac{2}{z}\;-\;\frac{1}{z}=\frac{1}{z}\quad\to \infty miközben (\frac{1}{z}+2)\;-\;\frac{1}{z}=2\quad\to 2

\frac{1}{z}\;\cdot z=1\quad\to 1 miközben \frac{2}{z}\;\cdot\;z=2\quad\to 2

\frac{1}{z}/\frac{1}{z}=1\quad\to 1 miközben \frac{2}{z}/\frac{1}{z}=2\quad\to 2

\frac{z}{z}=1\quad\to 1 miközben \frac{2z}{z}=2\quad\to 2

Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!

  1. \lim\limits_{z\to 0}\frac{\mathrm{Im}(z)}{z},
  2. \lim\limits_{z\to i}\frac{z-i}{z^2+1},
  3. \lim\limits_{z\to 1}\frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i},
  4. \lim\limits_{z\to 0}\frac{1}{z}-\frac{2}{\overline{z}},
  5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i},

Megoldás. 1. nemnulla z-re:

\frac{\mathrm{Im}(z)}{z}=\frac{\mathrm{Im}(z)\overline{z}}{z\overline{z}}=\frac{yx-y^2\mathrm{i}}{x^2+y^2}

de ekkor például az első komponensfüggvény x = 0 felől közelítve 0, míg az x = y-felől:1/2, azaz nem létezik az első komponensnek a (0,0)-ban határértéke, azaz a komplex függvénynek sem.

2. \frac{z-i}{z^2+1}=\frac{z-i}{(z+i)(z-i)}=\frac{1}{z+i}\quad\longrightarrow_{z\to i}\quad\infty

3. \frac{\frac{1}{z-1}+i}{\frac{1}{z^2-1}-i}=\frac{ \frac{1+iz-i}{z-1} }{ \frac{1-iz^2+i}{z^2-1} }=\frac{1+iz-i}{z-1}\cdot \frac{(z+1)(z-1)}{1-iz^2+i}

\left.\frac{iz+1-i}{-iz^2+i+1}(z+1)\right|_1=\frac{1}{1}\cdot 1

4. \frac{1}{z}-\frac{2}{\overline{z}}=\frac{\overline{z}-2z}{z\overline{z}} csak a valós részt nézve:

\left|\frac{-x}{x^2+y^2}\right|

az (x,y)=(x,0) esetben a (0,0)-hoz tartva: végtelen, de (x,y)=(0,y), akkor 0. tehát nincs határérték.

5. \lim\limits_{z\to -i}\frac{\frac{1}{z+i}+i}{\overline{z}-i}=\left(\frac{\infty}{0}\right)=\infty.


Feladat. Adjuk meg minden z0C számra az alábbi függvény határértékét!

  1. f(z)=\frac{z}{\overline{z}-z},
  2. f(z)=\frac{z^2}{\overline{z}z-1},

1. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}\ne z\}

Folytonos az értelmezési tartományában. A határon:

\frac{z}{\overline{z}-z}=\frac{x+iy}{2iy}\,

z0 ≠ 0 esetén

\left|\frac{x+iy}{2iy}\right|\geq \frac{|z_0|/2}{2|y|}\to \infty

z0 = 0 esetén:

\frac{x+iy}{2iy}=\frac{1}{2}-i\frac{x}{2y}

ismert, hogy nincs határérték.

2. \mathrm{Dom}(f)=\{z\in \mathbf{C}\mid \overline{z}z\ne 1\}

Az egységkör pontjaitól különbözőkre folytonos, az egységkörön a végtelen, a végtelenben pedig nincs határérték. Ugyanis:

|f(z)|=\frac{|z|^2}{|\overline{z}z-1|},

így az egységkörön a számláló az 1-hez, a nevező a nullához tart. A végtelenben pedig t valóssal:

\lim\limits_{t\to +\infty} f(t+0.i)=\lim\limits_{t\to +\infty} \frac{t^2}{t^2-1}= 1\,
\lim\limits_{t\to +\infty} f(t.i)=\lim\limits_{t\to +\infty} \frac{-t^2}{t^2-1}= -1\,


C-differenciálhatóság

A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől

(w\cdot z)'=w\in \mathbf{C}
(z^2)'=2z\in \mathbf{C}

mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a

(\overline{z})'=(\begin{smallmatrix} 1 & 0\\0 & -1\end{smallmatrix})\notin \mathbf{C}

mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.

Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Jelölése: f'(z0).

Azt, hogy az f a z0-ban komplex deriválható még úgy is jelöljük, hogy

f\in \mathrm{Diff}_{\mathbf{C}}(z_0).

Pontbeli deriváltra példa a következő.

Példa. Milyen n egész számokra deriválható a 0-ban az alábbi függvény?

f(z)=\begin{cases}\overline{z}\cdot z^n, & z\ne 0\\
0, & z=0
\end{cases}

Mo. Ha n>0, akkor a különbségi hányados:

\frac{\overline{z}\cdot z^n-0}{z-0}=\frac{\overline{z}\cdot z^n}{z}=\overline{z}\cdot z^{n-1}\to 0 ha z \to 0.

Ha n = 0, akkor

\frac{\overline{z}-0}{z-0}=\frac{\overline{z}}{z}=e^{i(-2\varphi)}

aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).

Ha n < 0, akkor

\frac{\overline{z}z^n-0}{z-0}=\frac{\overline{z}}{z^{-n+1}}=\frac{\overline{z}}{z}\frac{1}{z^{-n}}

ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.

Tehát n > 0-ra a függvény komplex deriválható a 0-ban, más n < 1-re nem deriválható.

Tétel. - A komplex differenciálhatóság jellemzése - Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:

1) f\in \mathrm{Diff}_{\mathbf{C}}(z_0)
2) f\in \mathrm{Diff}_{\mathbf{R}}(x_0,y_0) és [\mathrm{d}f(x_0,y_0)]\in\mathbf{C}.

Bizonyítás. Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény és w komplex szám. Tekintsük a következő határértéket:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)-[w]\cdot (z-z_0)}{|z-z_0|}=0

ahol az z, z0, f(z), f(z0) mennyisegekre ugy tekintunk, mint vektorokra. Ez ekvivalens a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{|z-z_0|}-\frac{w\cdot (z-z_0)}{|z-z_0|}\right|=0

ahol az elobb emlitettek mar algebrai ertelemben komplex szamok, nem feltetlenul vektorok. Azaz

\lim\limits_{z\to z_0}\left|\frac{z-z_0}{|z-z_0|}\left(\frac{f(z)-f(z_0)}{z-z_0}-w\right)\right|=0

Itt (z-z0)/|z-z0| a komplex egységkörön "futó" függvény, hossza 1, ezért a fenti ekvivalnes a következővel:

\lim\limits_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-w\right|=0

Ami viszont ugyanakkor igaz mint:

\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=w

Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol w a komplex derivált, akkor azt kapjuk, hogy a w mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z0)]=[w].

Másfelől, ha f valósan deriválható és a deriváltja a w komplex számot reprezentálja, akkor komplexen is deriválható es komplex derivaltja pont w.

Cauchy--Riemann-egyenletek A fenti tételben a [df(z)] ∈ C feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha f = u + iv és z = x +iy, akkor

\begin{cases}
\partial_xu=\partial_yv\\
\partial_yu=-\partial_x v
\end{cases}

Komplex deriváltfüggvény Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:

f'(z)=\partial_x u+\mathrm{i}\partial_xv=\partial_y v+\mathrm{i}\partial_xv=\partial_xu-\mathrm{i}\partial_yu=\partial_y v-\mathrm{i}\partial_yu

Definíció - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.

Feladat. Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?

Feladat. Legyen f(x + iy) = x2 + iy3. Hol komplex deriválható és hol reguláris f?


Harmonikus társ keresése

Azt mondjuk, hogy a kétszer differenciálható u=u(x,y) valós függvény harmonikus, ha

u_{xx}''+u_{yy}''\equiv \Delta u\equiv 0\,

itt Δ a Laplace-operátor (nem a Laplace-transzformátor!, hanem a vektoranalízisbeli vektormezőre Hesse-mátrix nyoma).

A C--R-egyenletek mutatják, hogy ha f=u+iv reguláris, akkor u és v harmonikus függvények. Ugyanis:

u_x'=v_y'\, és
v_x'=-u_y'\,

De u és v Hesse-mátrixa is szimmetrikus, ezért:

v_{yy}''=u_{xy}''=u_{yx}''=-v_{xx}''\,

azaz

\Delta v\equiv 0\, és fordítva.

Általában az a feladat, hogy ha adott u, akkor keressük az ő harmonikus társát, v-t, mellyel u+iv reguláris. Ha tehát adott u, akkor van F és G, hogy

F=v_y'\,
G=-v_x'\,

Ami az egzakt differenciálegynlet megoldásánál tanult parciális differenciálegyenlet megoldását igényli v-re, mint potenciálfüggvényre (ekkor f-et komplex pontenciálnak nevezzük, mármint a (v'x(x,y),vy'(x,y)) síkbeli vektormező komplex pontenciáljának; a v valódi pontenciálja lenne. Ennek szükséges utánanézni máshol is!)

1.. Keressünk harmonikus párt az

u=x^4+y^4-6x^2y^2\,

függvényhez!

Mo. Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.

6. gyakorlat
8. gyakorlat
Személyes eszközök