Szerkesztő:Mozo/Linalg gyakorló 3.

A MathWikiből
(Változatok közti eltérés)
30. sor: 30. sor:
 
Megoldás: x_0+Ker(A), Ker(A)={0}, mert A invertálható:
 
Megoldás: x_0+Ker(A), Ker(A)={0}, mert A invertálható:
  
x_0=(1,2,1)
+
x_0=(-1,-2,-1)
  
  

A lap 2010. március 11., 14:56-kori változata

1. Legyen L1 valódi altere az L vektortérnek (az az L1\neL). Igazoljuk, hogy ekkor \mathrm{dim}\,L_1<\mathrm{dim}\,L.

Mo. Először is hivatkozunk arra, hogy ha F független rendszer, B bázis és G generátorrendszer, akkor |F|\leq|B|\leq |G|. L1 egy B bázisa lineárisan független rendszer L-ben, így |B|\leq n, ahol n=\mathrm{dim}\,L.

Most tegyük fel indirekten, hogy |B|=n. Van olyan v vektor L-ben, ami független B-től, mert ha nem lenne, akkor B generátorrendszere lenne L-nek, amiből az következne, hogy L1=L lenne. BU{v} tehát független rendszer, azaz van L-ben n+1 elemű független rendszer. De L minden független rendszere legfeljebb csak n elemű, ami ellentmondás.

2.

 x-y+z=0\,
-3x+2y-z=0\,
-2x+y+az=-1\,

Mo.

\begin{bmatrix}
1 & -1 & 1 & 0\\
-3 & 2 & -1 & 0\\
-2 & 1 & a & -1
\end{bmatrix}\sim\begin{bmatrix}
1 & -1 & 1 & 0\\
0 & -1 & 2 & 0\\
0 & -1 & a+2 & -1
\end{bmatrix} \sim\begin{bmatrix}
1 & -1 & 1 & 0\\
0 & -1 & 2 & 0\\
0 & 0  & a & -1
\end{bmatrix}

Ax=b-nek pontosan akkor van megoldása, ha r(A)=r(A|b) (itt a r(A) az A mátrix rangja). r(A) az oszlopok által kifeszített altér dimenziója.

3\leq r(A|b)\leq 3

hisz egyrészt csak háromemeletesek, másrészt van három független (1.,2.,4. oszlop). r(A)=3 pontosan akkor, ha a≠0. Ezesetben pedig valóban 1 megoldás van, mert det(A) ≠ 0.

Megoldás: x_0+Ker(A), Ker(A)={0}, mert A invertálható:

x_0=(-1,-2,-1)


2x+4y=-2\,
-y+z=1\,
x+y+z=b\,
[\mathbf{A}|\mathbf{y}]\sim\begin{bmatrix}
2 & 4 & 0 & -2\\
0 & -1 & 1 & 1\\
1 & 1 & 1 & b
\end{bmatrix}\sim\begin{bmatrix}
1 & 2 & 0 & -1\\
0 & -1 & 1 & 1\\
0 & -1 & 1 & b+1
\end{bmatrix} \sim\begin{bmatrix}
1 & 2 & 0 & -1\\
0 & -1 & 1 & 1\\
0 & 0 & 0 & b
\end{bmatrix}

Megoldhatóság: b=0

Megoldások száma: végtelen, mert dimKer(A)=3-dimIm(A)=3-2=1

Megoldások: inhomogén: (-1,0,1). Ker(A)={t(-2,1,1)}

Személyes eszközök