A3 2009 vizsga 1
Differenciálgeometria
1. a) Határozza meg az
görbe azon pontjabeli érintőegyenesének egyenletrendszerét, mely a t=1 értékhez tartozik!
Mo. Az érintőegyenes irányvektora az r függvény t=1-beli deriváltvektora:
Az érintő egyenes vektoregyenlete
1. b) Határozzuk meg a
,
györbeszakasz ívhosszát! Mennyi t, ha a [0,t] intervallumon a görbe ívhossza 1 egység?
Mo.
A második kérdésre a választ az ívhossz paraméteres felításával tudhatjuk meg. Az integrálási változó legyen egy t-től különböző betű, mondjuk τ vagy t' vagy u. Ekkor
Innen t:
1. c) Mely pontokban párhuzamos az xyz=1 egyenletű felület érintősíkja az x+y+z=5 síkkal?
Mo. 1. mo) Legyen F(x,y,z)=xyz-1. Ekkor a felület egyenlete: F(x,y,z)=0. A felület normálvektorai: grad F = (yz,xz,xy). Kell, hogy grad F párhuzamos legyen az (1,1,1) vektorral, azaz létezzen λ, hogy grad F=λ(1,1,1), azaz
Ekkor x=y=z és λ=+1,-1. Tehát az F=0-t, azaz z=1/xy-t kielégítő megoldások (1,1,1), (-1,-1,1).
Integrálátalakító tételek
2. a) Számítsa ki a v(x,y,z)=(3xcos2z,3xez+3ysin2z,z) vektormező intregálját a hengerkoordinátákban megadott r(φ,r)=(r cos φ,r sin φ,1-r2), r∈[0,1], φ∈[0,2π] felületen!
Mo. A Gauss-tételt használjuk. A felület egy forgási paraboloid, melyet az [xy] síkkal lezárhatunk. Az [xy] sík mentén a vektortérnek csak [xy] irányú komponense van, tehát ennek a járuléka az integrálhoz 0. A divergencia:
A bezárt térrész paraméterezése:
A Jacobi-determináns hengrekoordinátázás esetén det J = r, így
2. b) Integráljuk a
vektormezőt az
görbe mentén!
Mo. A vektormező rotációmentes:
Megmondjuk a vektormező potenciálfüggvényét; ezt is vonalintegrállal. Tudjuk, hogy a rot v ≡ 0 miatt létezik Φ, amivel grad Φ = v és
Ezért legyen
Legyen a kezdőpont (0,0,0), a görbe:
Ezzel
Ellenőrizzük!
Ezzel a görbére a vonalintegrál:
- Φ( − 3,0,2) − Φ(3,0,2) = 12
Komplex függvénytan
3. a) Számítsuk ki az
(illetve
)
-1 (0) körüli Laurent-sorát, -1-beli (0-beli), reziduumát és a -1 (0) körüli egységsugarú körön vett integrálját és ott a szakadás jellegét!
Mo.
ezért
Ez a Laurent-sor. Tehát
Ez az egyetlen szinguláris hely, ezért az integrál ekörül:
a szakadás lényeges szingularitás, mert ∞ sok főtagvan a Laurent-sorban.
Ez a Laurent-sor. Res g = 0, integrálja 0. A szakadás lényeges szingularitás, mert ∞ sok főtagvan a Laurent-sorban.