Matematika A3a 2008/7. gyakorlat
Tartalomjegyzék |
Folytonosság
Azt mondjuk, hogy az A ⊆ C halmazon értelmezett f függvény folytonos a z ∈ A pontban, ha z-ben f folytonos mint R2 ⊇ A R2 függvény. Maga az f folytonos, ha az értelmezési tartománya minden pontjában folytonos.
A többváltozós valós analízisből ismert tény miatt fennáll:
Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy pontjában, ha ott a függvény valós és képzetes része, mint kétváltozós valós függvény folytonos. Azaz, ha f-et a következő alakban írjuk:
ahol u és v valós értékű függvények (rendre Re(f) és Im(f)), továbbá z0 = x0 + iy0 ∈ Dom(f), akkor a következők ekvivalensek:
- f folytonos a z0-ban
- u és v függvények folytonosak az (x0,y0)-ban
Határérték
Komplex függvény C-beli pontban vett C-beli határértéke ugyanúgy értelmezett, mint az R2 esetben. Itt is érvényes, hogy pontosan akkor látezik a határérték, ha a komponensfüggvényeknek létezik a határértéke és ekkor a határérték egyenlő lesz a valós és képzetes komponens határértékéből alkotott komplex számmal.
A ∞ miatt érdemes külön is megfogalmazni a határérték definícióját, bár az teljesen analóg a valós esettel. Legyen f egy az A ⊆ C halmazon értelmezett, C-be képező függvény. Legyen az A torlódási pontja, azaz minden r > 0 esetén legyen olyan a ∈ A, hogy a ∈ Br(u)\{u}. Azt mondjuk, hogy az f-nek a
elem határértéke az u-ban, ha
- minden ε > 0 esetén létezik olyan δ > 0, hogy minden z ∈ A ∩ Bδ(u)\{u}-re f(z) ∈ Bε(v)
ahol természetesen a ∞ környezetei a már említett módon értendők.
A kétváltozós függvények közötti határérték-folytonosság kapcsolat is megfogalmazható komplex módon. Itt az f = u + vi függvény határértékén a z = x + iy pontban a limx u + i limy v szám adja. Ekkor
Állítás. Az f komplex függvény pontosan akkor folytonos az értelmezési tartománya egy belső pontjában, ha ott a függvénynek létezik határértéke és az a helyettesítési érték.
A komplex függvények folytonosságának egyik, de nem egyetlen feltétele az, hogy az (u,v) reprezentáció R2-ben lineáris legyen, hiszen a véges dimenziós normált terek között ható lineáris leképezések folytonosak. A nem-folytonosságnál érdemes a határérték nem létezését vizsgálni, hátha ez célra vezet.
Feladat folytonosságra
Feladat. Legyen w ∈ C. Igazoljuk, hogy az alábbi függvények folytonosak!
Megoldás.
Az 1. az R2-ben eltolás a w-nek megfelelő vektorral (Re(w), Im(w))-vel, így affin leképezés, ami folytonos.
2. a w mátrixreprezentációjának megfelelő mátrixszal való szorzás, azaz lineáris leképezés, s így folytonos.
3. azaz a konjugálás: (x,y) (x,–y) a valós tengelyre való tükrözés, ami szintén lineáris.
Végül a reciprok:
így, mint R2 ⊃ R2 függvény:
amely olyan, hogy mindkét komponensfüggvénye folytonos valós függvényekből van összeállítva a folytonosságot megőrző módon, azaz az értelmezési tartománya minden pontjában folytonos.
Feladat. Folytonos-e a z = 0-ban az
Megoldás.
Ha z = x + iy és (x,y) ≠ (0,0), akkor:
A komponensfüggvények felírhatók egy 0-hoz tartó és egy korlátos függvény szorzataként:
és
így (x,y)(0,0) esetén a 0-hoz tartanak, így a függvény maga a (0,0)-hoz, azaz a komplex 0-hoz. Mivel itt a függvény értéke 0, ezért f a 0-ban folytonos.
Ha folytonos komplex függvényekből alapműveletek segítségével alkottunk függvényeket, akkor azok is folytonosak maradnak, mert a megfelelő R2-beli függvények ekkor olyanok lesznek, melyek mindegyik komponensfüggvénye a valós alapműveletek segítségével vannak definiálva. Ám, ezek megőrzik a folytonosságot.
Állítás. Ha f és g komplex függvények és az z0 pontban (mindketten értelmezettek és) folytonosak, akkor
- f + g
- f
g
-
- g(z0) ≠ 0 esetén f/g
is folytonos z0-ban.
Folytonos függvények kompozíciója is folytonos (az kompozíció értelmezési tartományán).
Feladat. Folytonos-e a z = i-ben az
Ha z = x + iy és (x,y) ≠ (0,1), akkor:
Már az első komponens határértéke sem létezik, hisz (x,y)=(0,y) mentén alulról a (0,1)-hez tartva a határérték -1, az x=y-1 mentén pedig -1/gyök kettő.
A második tényező szintén nem.
Feladatok határértékre
Feladat. Igazoljuk definíció szerint, hogy
1. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| < δ esetén, hogy a függvényérték a ∞ ε sugarú környezetébe esik, azaz:
Világos, hogy ezt azt jelenti, hogy
amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| < δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.
2. Legyen ε > 0. Ekkor azt kell belátnuk, hogy létezik δ > 0, hogy teljesüljön |z| > 1/δ esetén, hogy a függvényérték a 0-nak ε sugarú környezetébe esik, azaz:
Világos, hogy ezt azt jelenti, hogy
amit reciprokvonással kaptunk. Ha tehát ha δ := ε és |z| > 1/δ, akkor "felfelé" következtetve kijön a kívánt egyenlőtlenség.
A végtelen határérékkel történő számolás szabályai előtt definiálnunk kell néhány kibővített műveletet. Ezt a következők szellemében tesszük:
- Ha a és b valamelyike a ∞ szimbólum (a másik, ha nem ilyen, akkor komplex szám), akkor az a * b alapműveletet akkor értelmezzük a c szimbólumként (mely szintén vagy komplex szám, vagy az ∞), ha minden a határértékű f függvény esetén és minden b határértékű g függvény esetén a f*g szükségszerűen a c-hez tart. Ekkor mondjuk tehát, hogy az
- a * b = c
- definíció jó.
Például a ∞ + ∞ művelet feltétlenül értelmezett és értéke a ∞, mert könnyen látható, hogy bármely két, a ∞-hez tartó függvény összege is a ∞-hez tart. De a 0 ∞ művelet nem értelmezhető, mert van két függvénypár, mely ilyen alakú határértékekkel rendelkezik, de a szorzatuk máshoz tart. Pl.: (1/Re(z))
Re(z)
1, a z=0-ban, de (1/Re(z))
2 Re(z)
2 a z=0-ban.
Definíció – Végtelen és alapműveletek – Az alábbi műveleti szabályokat vezetjük be a ∞, szimbólumra vonatkozóan, az alábbiakban z tetszőleges komplex szám, n tetszőleges nemnulla komplex szám:
-
,
-
,
-
,
-
,
továbbá a szorzás és az összeadás kommutatív.
Megjegyezzük még, hogy , azaz a végtelen konjugáltja saját maga.
Definíció – Határozatlan esetek – Az alábbi alapműveletek nem értelmezhetők:
-
,
-
,
-
,
-
Tétel – Végtelen határérték és alapműveletek – Ha az f és g komplex függvényeknek létezik határértékük az helyen, az f * g alapművelettl elkészített függvény értelmezési tartományának torlódási pontja u és a limu f * limu g alapművelet elvégezhető, akkor az f * g függvénynek is van határértéke u-ban és ez:
Ezenkívül a határozatlan esetekben, amikor a határértékekkel végzett műveletek nem értelmezettek, az alapműveletekkel elkészített függvények határértékeire nem adható általános képlet (mert alkalmasan választott esetekben máshoz és máshoz tartanak).
A bizonyításról. Ennek a tételnek a bizonyítása minden nehézség nélkül elvégezhető vagy az R2-beli sorozatokra vonatkozó átviteli elv vagy a komponensfüggvények határértékére történő hivatkozás útján. Minenekelőtt azt kell szem előtt tartanunk, hogy a végtelenhez való tartás, a függvény abszolútértékének plusz végtelenhez tartását jelenti:
Feladat. Adjuk példákat arra, hogy a határozatlan alakú határértékeket valóban nem lehet definiálni.
Nézzük a 0-ban az alábbi függvényeket:
miközben
miközben
miközben
miközben
Feladat. Számítsuk ki az alábbi határértékeket, ha léteznek!
-
,
-
,
-
,
-
,
-
,
Megoldás. 1. nemnulla z-re:
de ekkor például az első komponensfüggvény x = 0 felől közelítve 0, míg az x = y-felől:1/2, azaz nem létezik az első komponensnek a (0,0)-ban határértéke, azaz a komplex függvénynek sem.
2.
3.
4.
csak a valós részt nézve:
az (x,y)=(x,0) esetben a (0,0)-hoz tartva: végtelen, de (x,y)=(0,y), akkor 0. tehát nincs határérték.
5. .
Feladat. Adjuk meg minden z0 ∈ C számra az alábbi függvény határértékét!
-
,
-
,
1.
Folytonos az értelmezési tartományában. A határon:
z0 ≠ 0 esetén
z0 = 0 esetén:
ismert, hogy nincs határérték.
2.
Az egységkör pontjaitól különbözőkre folytonos, az egységkörön a végtelen, a végtelenben pedig nincs határérték. Ugyanis:
,
így az egységkörön a számláló az 1-hez, a nevező a nullához tart. A végtelenben pedig t valóssal:
C-differenciálhatóság
A komplex differenciálhatóság az előző észrevételekkel szoros kapcsolatban lesz. Egyfelől
mutaja, hogy ha a Jacobi-mártix hasonlóképpen viselkedik a komplex számok mátrixreprezentációjában, mint az egyváltozós valós derivált. Másrészt a
mutatja, hogy nem minden valósan deriválható függvény lesz komplex deriválható. Nézzük akkor az egyváltozós valós mintájára a definíciót majd lássuk a komplex differenciálhatóság jellemzését.
Definíció - Komplex differenciálhatóság, komplex derivált - Legyen f a z0 egy környezetében értelmezett függvény. Azt mondjuk, hogy f C-deriválható z0-ban és deriváltja a w szám, ha
Jelölése: f'(z0).
Azt, hogy az f a z0-ban komplex deriválható még úgy is jelöljük, hogy
.
Pontbeli deriváltra példa a következő.
Példa. Milyen n egész számokra deriválható a 0-ban az alábbi függvény?
Mo. Ha n>0, akkor a különbségi hányados:
ha z
0.
Ha n = 0, akkor
aminek nincs határértéke a 0-ban (az egységkörön mozog a végpont).
Ha n < 0, akkor
ami a 0-ban a komplex végtelenbe tart, mert a hossza a végtelenbe tart.
Tehát n > 0-ra a függvény komplex deriválható a 0-ban, más n < 1-re nem deriválható.
Tétel. - A komplex differenciálhatóság jellemzése - Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény. Ekkor az alábbiak ekvivalensek:
- 1)
- 2)
és
.
Bizonyítás. Legyen f a z0 = x0 + iy0 egy környezetében értelmezett függvény és w komplex szám. Tekintsük a következő határértéket:
ahol az z, z0, f(z), f(z0) mennyisegekre ugy tekintunk, mint vektorokra. Ez ekvivalens a következővel:
ahol az elobb emlitettek mar algebrai ertelemben komplex szamok, nem feltetlenul vektorok. Azaz
Itt (z-z0)/|z-z0| a komplex egységkörön "futó" függvény, hossza 1, ezért a fenti ekvivalnes a következővel:
Ami viszont ugyanakkor igaz mint:
Ha a következtetésben felfelé vizsgálódunk, tehát feltesszük a komplex deriválhatóságot ahol w a komplex derivált, akkor azt kapjuk, hogy a w mátrixreprezentációjával való mátrixszorzás alkalmas lineáris leképezés a valós derivált számára, azaz létezik [df(z0)]=[w].
Másfelől, ha f valósan deriválható és a deriváltja a w komplex számot reprezentálja, akkor komplexen is deriválható es komplex derivaltja pont w.
Cauchy--Riemann-egyenletek A fenti tételben a [df(z)] ∈ C feltétel (természetesen a totális deriválhatóság esetén) ekvivalens az alábbiakkal. Ha f = u + iv és z = x +iy, akkor
Komplex deriváltfüggvény Ahol egy f komplex függvény komplex deriválható, ott a deriváltja:
Definíció - Regularitás - Az f komplex függvény reguláris a z pontban, ha f a z egy egész környezetén értelmezett, és a teljes környezetben komplex deriválható.
Feladat. Legyen f(x+iy)=|x|+i|y|. Hol komplex deriválható és hol reguláris f?
Feladat. Legyen f(x + iy) = x2 + iy3. Hol komplex deriválható és hol reguláris f?
Harmonikus társ keresése
Azt mondjuk, hogy a kétszer differenciálható u=u(x,y) valós függvény harmonikus, ha
itt Δ a Laplace-operátor (nem a Laplace-transzformátor!, hanem a vektoranalízisbeli vektormezőre Hesse-mátrix nyoma).
A C--R-egyenletek mutatják, hogy ha f=u+iv reguláris, akkor u és v harmonikus függvények. Ugyanis:
és
De u és v Hesse-mátrixa is szimmetrikus, ezért:
azaz
és fordítva.
Általában az a feladat, hogy ha adott u, akkor keressük az ő harmonikus társát, v-t, mellyel u+iv reguláris. Ha tehát adott u, akkor van F és G, hogy
Ami az egzakt differenciálegynlet megoldásánál tanult parciális differenciálegyenlet megoldását igényli v-re, mint potenciálfüggvényre (ekkor f-et komplex pontenciálnak nevezzük, mármint a (v'x(x,y),vy'(x,y)) síkbeli vektormező komplex pontenciáljának; a v valódi pontenciálja lenne. Ennek szükséges utánanézni máshol is!)
1.. Keressünk harmonikus párt az
függvényhez!
Mo. Van neki, ha Δ=0. Ezt ellenőrizni kell, majd az előző módszerrel megkeresi v-t, amivel u+iv reguláris.
6. gyakorlat |
8. gyakorlat |