Borel–Lebesgue-tétel
A Borel–Lebesgue lefedési tétel vagy Heine–Borel-tétel a matematikai analízis egy a zárt, korlátos intervallumok lényeges tulajdonságára rámutató tétel. Általánosítása érvényes Rn-ben is, továbbá a topologikus terek elméletében a kompakt halmaz fogalmának motivációjául szolgál.
Tartalomjegyzék |
A tétel
Tétel – (Dirichlet 1862, Heine 1872) – Ha K ⊆ R korlátos és zárt halmaz és K-nak nyílt lefedése, akkor ebből kiválasztható véges sok elem, mely még mindig lefedi K-t.
(A K nyílt lefedésén olyan nyílt halmazokból álló halmazrendszert értünk, amire teljesül, hogy K részhalmaza
uniójának.)
Bizonyítás
Cantor-tétellel
A Cantor-féle közösrész tétel egy ekvivalens megfogalmazását fogjuk használni. Eszerint, ha R-beli korlátos és zárt halmazok olyan nemüres rendszere, hogy minden α, β ∈ A indexre létezik olyan γ ∈ A index, hogy Fγ ⊆ Fα∩Fβ (azaz lefelé irányított), akkor az
halmazrendszer metszete nem üres.
Jelölje A az I véges részhalmazainak halmazát és legyen tetszőleges α ∈ A-ra:
Ekkor a halmazrendszer olyan, hogy minden eleme korlátos és zárt R-ben és tetszőleges α, β ∈ A-ra a γ := α U β elem olyan, hogy Fγ ⊆ Fα∩F</sub>β</sub>. A tételt azt igazolná, ha belátnánk, hogy van olyan α∈A, hogy Fα ≠ ∅, ugyanis ekkor
teljesülne.
Ha minden eleme nemüres volna, akkor a Cantor-axióma fenti alakjából következne, hogy
ami ellentmondás, hiszen definíciójából és a halmazkivonásra vonatkozó de-Morgan-szabályból következik, hogy
Tehát van -nak olyan eleme, mely üres, és az ezt indexező α∈A-val a
a kívánt tulajdonságú lefedés lesz. ■
Bolzano–Weierstrass-tétellel
Mivel R teljesíti a második megszámlálhatósági kritéruimot, azaz van megszámlálható környezetbázisa (például a racionális végpontú nyílt intervallumok ilyet alkotnak), a K korlátos és zárt halmazt lefedő rendszerből kiválasztható megszámlálható részlefedés. Legyen ez (Ωi)i=1∞. Definiálunk egy K-ban haladó (xn) sorozatot. Ha Ω1 lefedi K-t, akkor megtaláltuk a véges részlefedést. Ha Ω1 nem fedi le K-t, legyen x1 ∈ K \ Ω1. Ha Ω1 ∪ Ω2 már lefedi K-t, akkor szintén megtaláltuk a véges részlefedést. Ha nem, legyen x2 ∈ K \ (Ω1 ∪ Ω2). Így folytatva biztos lesz olyan n, hogy (Ωi)i=1n már lefedi K-t. Tegyük fel ugyanis, hogy nem fedné le. Akkor (xn) egy végtelen, K-ban haladó sorozat lenne, aminek a Bolzano–Weierstrass-tétel szerint lenne u ∈ K sűrűsödési pontja. Mivel (Ωi)i=1∞ lefedi K-t ezért u-t is tartalmazza egy Ωm nyílt halmaz. u-nak van Ωm-be eső nyílt környezete, és ebben a környezetben végtelen sok (xn)-beli tag. (xn) konstrukciója szerint minden n-re (Ωi)i=1n-ben csak véges sok tag lehet. Ez azonban ellentmond annak, hogy már magában Ωm-ben is végtelen sok tag van.
Tehát a véges nyílt lefedés kiválasztásának fenti konstrukciója véges sok lépésben véget ér (bár, hogy mi lesz ez a szám, előre nem tudjuk megmondani sehogyan sem; sőt, már magát (Ωi)i=1∞ sem fogjuk tudni megadni konstruktívan, kézzelfogaható módon).
A tétel megfordítása
A lefedési tulajdonság motiválja a kompakt halmaz fogalmát. A K ⊆ R halmaz kompakt, ha minden nyílt lefedéséből kiválasztható véges részlefedés. Ekkor a Borel–Lebesgue-tétel megfordítása érvényes:
Tétel – R-ben minden kompakt halmaz korlátos és zárt.
Bizonyítás. Legyen K kompakt halmaz.
Először a korlátosságot látjuk be. Legyen u tetszőleges R-beli pont. Ekkor világos, hogy a (B(u,n))n∈N rendszer lefedi K-t. Ebből kiválaszható véges részlefedés, melyek közül a legnagyobb sugarú lefedi K-t, így K átmérője legfeljebb ennek a sugárnak a kétszerese.
Vegyünk egy tetszőleges x pontot K komplementeréből (x ∉ K). A
rendszer lefedi K-t így létezik n darab y1, ..., yn K-beli elem, hogy
Ha r a legkisebb sugár mindközül, akkor a B(x,r) halmaz nem metsz bele az iménti lefedés egyik elemébe sem, így K-ba sem. Tehát K komplementere nyílt, K pedig zárt.